The Effect of Alkaline Media and Temperature on the Structure and Magnetic Properties of Magnetic Nanoparticles Modified with PEG
Subject Areas : Mechanical EngineeringAbolfazl Khodadadi 1 * , Yaghoob Mohammadmoradi 2 , Mohammad Rahim Talebtash 3
1 - Department of Physics, Tehran North Branch, Islamic Azad University, Tehran, Iran
2 - Department of Physics, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
3 - Department of Engineering ,Shahriar, Branch, Islamic Azad University, Shahriar, Iran
Keywords: Magnetic nanoparticles, Magnetic properties, Magnetic Saturation, Superparamagnetic,
Abstract :
Magnetic nanoparticles were synthesized and coated by the situ-coprecipitation method with FeCl3.6H2O and FeCl2.4H2O precursors in the presence of NH4OH (or NaOH) reduction and PEG coated agent. Preparation of modified magnetic nanoparticles were performed at two different temperatures under the influence of different alkaline media. The effect of strength of alkaline media and reaction temperature of the magnetic properties (Magnetic saturation, Magnetic remanent, coercive force (of modified MNPs were investigated. To study structure, morphology, optic and magnetic properties MNPs were characterized by XRD, FTIR, TEM and VSM analyzes.The results showed that modified magnetic nanoparticles have superparamagnetic properties and have high magnetic saturation and small coercive force, so the magnetic properties of the modified MNPs are depended to the strength of the alkaline remanent directly. The saturation magnetization of the synthesized sample in NH4OH and NaOH at 80° C was determined as 60.94 and 49.39 emu/g, respectively. Also increasing temperature, improves magnetic properties coated MNPs) at temperatures below the blocking temperature. (The results of the XRD analysis showed that the structure of the modified magnetic nanoparticles is inverted spinel and the size of the nanoparticles synthesized in the ammonia media is smaller than the other media. The results of FTIR optical analysis revealed that the peaks at ~570 and ~440 cm^(-1) indicates the bond Fe-O. TEM analysis indicated that the shape of the MNPs is pseudo-spherical. VSM analysis indicated that the magnetic nanoparticles synthesized in stronger alkaline media (ammonia) and high temperature showed better magnetic behavior by higher magnetic properties.
[1] P. Arosio, Nanomaterials, 2020, 11, 1297. https://doi.org/10.3390/nano11051297
[2] P. L. Khan, K. Saeed, I. Khan,Arabian Journal of Chemistry. 2019, 12. doi.org/10.1016/j.arabjc.2017.05.011
[3] A. Monsalve, J. Vicente, A. Grippin, J. Dobson, IEEE Magnetics Letters, 2017,8. doi: 10.1109/LMAG.2017.2726505.
[4] R. Bansal, B. Gronkiewicz, G. Storm, J. Prakash, J. Hepatol., 2017,66. Doi: 10.1016/S0168-8278(17)30348-3
[5] A. Ali, H. Zafar, M. Zia, I. ul Haq, AR. Phull, JS. Ali, A. Hussain, Nanotechnol Sci Appl., 2016 ,9.
https://doi.org/10.2147/NSA.S99986
[6] L. Mohammed, H. G. Gomaa, D. Ragab, J. Zhu, Particuology, 2017,30. https://doi.org/10.1016/j.partic.2016.06.001
[7] M. Aghazadeh, I. Karimzadeh, A. Ahmadi, M. R. Ganjali, Journal of Materials Science: Materials in Electronics, 2018, 29,14567. doi.org/10.1007/s10854-018-9591-1
[8] SE. Litovsk, Dekker encyclopedia of nanoscience and nanotechnology. 3rd ed. Boca Raton: CRC Press; 2014. p. 7
[9] I. Karimzadeh, M. Aghazadeh, A. Dalvand, T. Doroudi, P. H. Kolivand, M. R. Ganjali, P. Norouzi, Materials Research Innovations, 2019, 23,1.
[10] L. H. Reddy, J. L.Arias, J. Nicolas, P. L.Couvreur, Chem. Rev., 2012, 14,112. DOI: 10.1021/cr300068p
[11] M. Aghazadeh, I. Karimzadeh, M. R. Ganjali, Bentham Science Publishers, 2019, 15, 169. doi.org/10.2174/1573413714666180622150216
[12] I. P. Suzdalev, Yu. V. Maksimov, V. K. Imshennik, S. V. Novichikhin, V. V. Matveev, Yu. D. Tret’yakov, A. V. Lukashin, A. A. Eliseev, N. V. Avramenko, A. A. Malygin, E. A. Sosnov, Russian Chemical Bulletin, 2006, 55, 1755.
[13] S. Schwinger, C. Suhr, S. B. Meier, Crystals, 2020, 85747.
[14] F. B. Effenberger, R. A. Couto, P.K. Kiyohara, G. S. H. Machado, et al, Nanotechnology. 2017, 28, 115603.
[15] Patselas, V.; Kosinová, L.; Lovri, M.; Ferhatovic, L.; Rabyk, M.; et al., ACS Appl. Mater. Interfaces.8, 2016, 7238-7247. DOI: 10.1021/acsami.5b12720.
[16] E. L. Albert, C. A. Che Abdullah, Y. Shirataki, Results Phys., 2018, 11. 944-950. DOI: 10.1016/j.rinp.2018.10.054.
[17] A. Ali, S. Rehmat, P. Zhou, K. Guo, M. Ovais, Front Chem. 2021; 9, 629054, DOI: 10.3389/fchem.2021.629054
[18] A. Khodadadi, M.R. Talebtash, M. Farahmandjou, Physical Chemistry Research, 10, 2022; 537. doi: 10.22036/pcr.2022.326878.2023
[19] N.S. Bajaj, R.A. Joshi. the coprecipitation is the simplest way to prepare iron oxide nanoparticles of magnetite (Fe3O4). Handbook of Nanotechnology Application ,2021., in Energy Materials.
[20] X, Chu, Y.L. Hou, Magnetic nanomaterials: Fundamentals, synthesis and applications. In Y. L. Hou, D. J. Selmer (Eds.), Overview of Synthesis of Magnetic Nanomaterials, 2017, 83-120. United States: Wiley.
[21] K. Koo, A.E. Ismail,M.D. Othman, N. Bidin, M. Rahman, Malaysian J. Fund. Appl. Sci., 2019, 15, 23-31. DOI: 10.11113/mjfas.v15n2019.1224.
[22] S.P. Yeap, L.K. Lim, B.S. Ooi, A.A. Ahmad. J. Nanoparticle. Res. 2017, 19, 368, DOI: 10.1007/s11051-017-4065-6.
[23] C.D Ahrberg, J.W. Choi, B.G. Chung, Sci. Rep. 2020, 10: 1737. DOI:10.1038/s41598-020-58580-9.
[24] M. Salehipour, S. Rezaei, J. safer, Z. Pakdin-Parizi, J. Nanoparticle Res. 2021, 23, DOI: 10.1007/s11051-021-05156-x.
[26] I. Karimzadeh, M. Aghazadeh, T. Davoudi, M.R. Ganjali, P.H. Koliva, Adv. Phys. Chem. 2017, 9437487, DOI:10.1155/2017/9437487.
[26] A. Ganesha, S.Edi, Mater. Res. Express,2020, 7, 056103.
[27] Scherrer P., Mathematisch- Physikalische Klasse, 1918, 2, 98–100.
[28] M. Farahmandjou, S. Jurablu, Int. J. Bio-Inorg. Hybr. Nanomater. 2014, 3, 179-184.
[29] H. Shokrollahi, J. Magnet. Mater. 2017, 426, 74-81, DOI: 10.1016/j.jmmm.2016.11.033.
[30] A. Khodadadi, M. Farahmandjou, M. Yaghoubi, Mater. Res. Express. 2018, 6, 025029. DOI:10.1088/2053-1591/aaef70.
[31] H. Shokrollahi, J. Magnet. Mater. 2017, 426, 74-81, DOI: 10.1016/j.jmmm.2016.11.033.
[32] F. Assay, H. Jafarizadeh-Malamiri, H. Ajman, et al, Nano Res., 2016, 9, 2203. https://doi.org/10.1007/s12274-016-1131-9
[33] B. Liu, D. Wang, W. Huang, A. Yao, M. Kamitakahara, K. Ioku. Journal of the Ceramic Society of Japan, 2007, 115, 877.
[34] P. Businova, J. C. J. Prasek, R. Hrdy, Janadrbohlavova, P. Sedlacek , J. Hubalek. Journal Of Neocon., 2011, 21.
[35] A. C. Anil, K. Govindan, M. Rangarajan, Materials Science and Engineering, 2019, 577. doi:10.1088/1757-899X/577/1/012153