ابرخازنهای پایه مکسن و چشمانداز آینده آن
محورهای موضوعی : شیمی کاربردیطیبه محبی 1 , مجید میرزایی 2 * , مسعود همدانیان 3
1 - دانشجوی دکتری گروه شیمی، دانشگاه کاشان، کاشان، ایران.
2 - استادیار گروه پژوهشی مواد غیرفلزی، پژوهشگاه نیرو، تهران، ایران.
3 - عضو هیات علمی گروه نانوشیمی(دانشیار)، دانشگاه کاشان، گروه شیمی،کاشان، ایران صندوق پستی: 51167-87317
کلید واژه: چندسازه, مکسن, ابرخازن,
چکیده مقاله :
مکسنها (MXene) بهدلیل ساختار بیهمتا و گروههای عامل شیمیایی قابلتنظیم، یک سری ویژگی شگفتانگیز دارند. کاربرد مکسنها در ذخیرهسازی انرژی الکتروشیمیایی بهویژه نشاندادن پتانسیل بالا در کاربردهای ابرخازن توجه ویژهای را به خود جلب کرده است. در مقایسه با سایر مواد، مکسنها انعطاف مکانیکی بالا، چگالی انرژی بالا و کارایی الکتروشیمیایی خوبی دارند. بنابراین، به ویژه بهعنوان مواد الکترود برای ابرخازنها مناسب هستند. با این حال، مشابه سایر مواد دو بعدی، بهدلیل نیروهای قوی واندروالس، لایههای مکسن بهناچار انباشته میشوند که منجر به از دستدادن شدید مکانهای فعال الکتروشیمیایی میشوند. اگر بتوان تجمع لایههای مکسن را بهطور مؤثری مهار کرد، کارایی الکتروشیمیایی آنها افزایش مییابد. بهینهسازی ساختاری مکسنها و دوپهشدن آنها با مواد دیگر دو راهبرد موثر چشمگیر است. این مقاله، پیشرفتهای اخیر در سنتز مکسن، ویژگی اساسی، و مواد چندسازه را با تمرکز بر آخرین کارایی الکتروشیمیایی الکترودها/دستگاههای مبتنی بر مکسن مرور میکند و چالشها و فرصتهای جدیدی را که مکسن در زمینه ذخیرهسازی انرژی با آن مواجه است، ارائه میکند.
MXenes have a series of amazing properties due to their unique structure and tunable chemical functional groups. The application of MXenes in electrochemical energy storage, especially showing high potential in supercapacitor applications, has attracted special attention. Compared to other materials, MXenes have high mechanical flexibility, high energy density, and good electrochemical performance, so they are especially suitable as electrode materials for supercapacitors. However, similar to other 2D materials, due to strong van der Waals forces, MXene layers inevitably undergo stacking, leading to a severe loss of electrochemically active sites. If the layers of MXenes can be suppressed effectively, their electrochemical performance will be enhanced. Structural optimization of MXenes and composite doping of MXenes with other materials are two strategies with significant effects. This review summarizes recent advances in MXene synthesis, fundamental properties, and composite materials with a focus on the latest electrochemical performance of MXene-based electrodes/devices and presents new challenges and opportunities that MXene faces in energy storage
[1] Mirzaee M, Dehghanian C. Synthesis of flower-like NiCo2O4 via chronopotentiometric technique and its application as electrode materials for high-performance supercapacitors. Materials Today Energy. 2018;10:68-80. doi: org/10.1016/j.mtener.2018.08.011
[2] Mirzaee M, Dehghanian C. Pulsed electrodeposition of reduced graphene oxide on Ni-NiO foam electrode for high-performance supercapacitor. International Journal of Hydrogen Energy. 2018;43(27):12233-50. doi: org/10.1016/j.ijhydene.2018.04.173
[3] Mirzaee M, Dehghanian C, Sabet Bokati K. ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors. Applied Surface Science. 2018;436:1050-60. doi: org/10.1016/j.apsusc.2017.12.145
[4] Mirzaee M, Dehghanian C, Sabet Bokati K. One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor. Journal of Electroanalytical Chemistry. 2018;813:152-62. doi: org/10.1016/j.jelechem.2018.02.032
[5] Mirzaee M, Dehghanian C. Synthesis of Nickel-Nickel oxide foam by electrochemical method and its application in supercapacitor. Advanced Processes in Materials Engineering. 2019;13(2):17-25. dor: 20.1001.1.24233226.1398.13.2.2.0
[6] Mirzaee M, Dehghanian C. Deposition of spinel cobalt nickel on nickel foam by a constant current electrochemical method and its supercapacitor application. Journal of New Materials. 2019;10(35):39-48. dor: 20.1001.1.22285946.1398.9.35.4.6
[7] Gogotsi Y. What Nano Can Do for Energy Storage. ACS Nano. 2014;8(6):5369-71. doi: org/10.1021/nn503164x
[8] Su Z, Yang C, Xie B, Lin Z, Zhang Z, Liu J, et al. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy & Environmental Science. 2014;7(8):2652-9. doi: org/10.1039/C4EE01195C
[9] Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries. ACS Applied Materials & Interfaces. 2014;6(14):11173-9. doi: org/10.1021/am501144q
[10] Cai D, Huang H, Wang D, Liu B, Wang L, Liu Y, et al. High-Performance Supercapacitor Electrode Based on the Unique ZnO@Co3O4 Core/Shell Heterostructures on Nickel Foam. ACS Applied Materials & Interfaces. 2014;6(18):15905-12. doi: org/10.1021/am5035494
[11] Si C, Jin K-H, Zhou J, Sun Z, Liu F. Large-Gap Quantum Spin Hall State in MXenes: d-Band Topological Order in a Triangular Lattice. Nano Letters. 2016;16(10):6584-91. doi: org/10.1021/acs.nanolett.6b03118
[12] Mirzaee M, Dehghanian C. Flower-like mesoporous nano NiCo2O4 -decorated ERGO/Ni-NiO foam as electrode materials for supercapacitor. Materials Research Bulletin. 2019;109:10-20. doi: org/10.1016/j.materresbull.2018.09.020
[13] Mirzaee M, Dehghanian C. Nanostructured Ni-Cu foam electrodeposited on a copper substrate applied as supercapacitor electrode. Acta Metallurgica Slovaca. 2018;24(4):325-36. doi: 10.12776/ams.v24i4.1138
[14] Mirzaee M, Dehghanian C. Preparation of dendritic nanoporous Ni-NiO foam by electrochemical dealloying for use in high-performance supercapacitors. Journal of Solid State Electrochemistry. 2018;22:3639-45. doi: org/10.1007/s10008-018-4065-1
[15] Mirzaee M, Dehghanian C. Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Journal of the Iranian Chemical Society. 2019;16:283-92. doi: org/10.1007/s13738-018-1505-x
[16] Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, et al. Design and mechanisms of asymmetric supercapacitors. Chemical Reviews. 2018;118(18):9233-80. doi: org/10.1021/acs.chemrev.8b00252
[17] Zhou Ruihua Charge storage by electrochemical reaction of water bilayers absorbed on MoS2 monolayers. Scientific reports .2019; 9(1): 3980. doi: org/10.1038/s41598-019-40672-w
[18] Mirzaee M, Dehghanian C, Sarbishei S. Facile synthesis of nano dendrite-structured Ni–NiO foam/ERGO by constant current method for supercapacitor applications. Journal of Applied Electrochemistry. 2018;48:923-35. doi: org/10.1007/s10800-018-1229-8
[19] Mirzaee M, Dehghanian C. Comparison between constant current electrochemical and pulse current approach in reduction of graphene oxide on nickel-nickel oxide foam. Advanced Materials and New Coatings. 2019;7(28):2002-8. doi: /AMNC.2019.7.28.4
[20] Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D. Carbon-based composite materials for supercapacitor electrodes: A review. Journal of Materials Chemistry A. 2017;5(25):12653-72. doi: org/10.1039/CTA00863E
[21] Nataf K, Bradley TH. An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities. Applied Energy. 2016;164:133-9. doi: org/10.1016/j.apenergy.2015.11.102
[22] Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews. 2017;46(22):6816-54. doi: org/10.1039/C7CS00205
[23] Divya K, Østergaard J. Battery energy storage technology for power systems—An overview. Electric power systems research. 2009;79(4):511-20. doi: org/10.1016/j.epsr.2008.09.017
[24] Zhou J, Zhang S, Zhou Y-N, Tang W, Yang J, Peng C, et al. Biomass-derived carbon materials for high-performance supercapacitors: Current status and perspective. Electrochemical Energy Reviews. 2021;4:219-48. doi: org/10.1007/s41918-020-00090-3
[25] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews. 2012;41(2):797-828. doi: org/10.1039/C1CS15060J
[26] Shan H, Qin J, Ding Y, Sari HMK, Song X, Liu W, et al. Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Advanced Materials. 2021;33(37):2102471. doi: org/10.1002/adma.202102471
[27] Zhou Z, Seif A, Pourhashem S, Silvestrelli PL, Ambrosetti A, Mirzaee M, et al. Experimental and theoretical studies toward superior anti-corrosive nanocomposite coatings of aminosilane wrapped layer-by-layer graphene oxide@MXene/waterborne epoxy. ACS Applied Materials & Interfaces. 2022;14(45):51275-90. doi: org/10.1021/acsami.2c14145
[28] Shi H, Zhang P, Liu Z, Park S, Lohe MR, Wu Y, et al. Ambient‐stable two‐dimensional titanium carbide (MXene) enabled by iodine etching. Angewandte Chemie International Edition. 2021;60(16):8689-93. doi: org/10.1002/anie.202015627
[29] Liu A, Liang X, Ren X, Guan W, Ma T. Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: Potential high-performance electrodes. Electrochemical Energy Reviews. 2022:1-33. doi: org/10.1007/s41918-021-00110-w
[30] Gao Q, Sun W, Ilani-Kashkouli P, Tselev A, Kent PR, Kabengi N, et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy & Environmental Science. 2020;13(8):2549-58. doi: org/10.1039/D0EE01580F
[31] Zhu Y, Rajoua K, Le Vot S, Fontaine O, Simon P, Favier F. Modifications of MXene layers for supercapacitors. Nano Energy. 2020;73:104734. doi: org/10.1016/j.nanoen.2020.104734
[32] Tang J, Mathis T, Zhong X, Xiao X, Wang H, Anayee M, et al. Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Advanced Energy Materials. 2021;11(4):2003025. doi: org/10.1002/aenm.202003025.
[33] Zhang Z, Yao Z, Zhang X, Jiang Z. 2D Carbide MXene under postetch low-temperature annealing for high–performance supercapacitor electrode. Electrochimica Acta. 2020;359:136960. doi: org/10.1016/j.electacta.2020.136960
[34] Cai C, Zhou W, Fu Y. Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chemical Engineering Journal. 2021;418:129275. doi: org/10.1016/j.cej.2021.129275
[35] Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341(6153):1502-5. doi: org/10.1016/j.cej.2021.129275
[36] Hu M, Li Z, Hu T, Zhu S, Zhang C, Wang X. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano. 2016;10(12):11344-50. doi: org/10.1021/acsnano.6b06597
[37] Dall'Agnese Y, Lukatskaya MR, Cook KM, Taberna P-L, Gogotsi Y, Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications. 2014;48:118-22. doi: org/10.1016/j.elecom.2014.09.002
[38] Li J, Yuan X, Lin C, Yang Y, Xu L, Du X, et al. Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Advanced Energy Materials. 2017;7(15):1602725. doi: org/10.1002/aenm.201602725
[39] Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A. 2017;5(42):22113-9. doi: org/10.1039/C7TA07999K
[40] Wang Y, Dou H, Wang J, Ding B, Xu Y, Chang Z, et al. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. Journal of Power Sources. 2016;327:221-8. doi: org/10.1016/j.jpowsour.2016.07.062
[41] Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy. 2017;38:368-76. doi: org/10.1016/j.nanoen.2017.06.009
[42] Sun L, Fu Q, Pan C. Hierarchical porous “skin/skeleton”-like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. Journal of Hazardous Materials. 2021;410:124565. doi: org/10.1016/j.jhazmat.2020.124565
[43] Liu Z, Wang L, Xu Y, Guo J, Zhang S, Lu Y. A Ti3C2TX@PEDOT composite for electrode materials of supercapacitors. Journal of Electroanalytical Chemistry. 2021;881:114958. doi: org/10.1016/j.jelechem.2020.114958
[44] Yan J, Ma Y, Zhang C, Li X, Liu W, Yao X, et al. Polypyrrole–MXene coated textile-based flexible energy storage device. RSC Advances. 2018;8(69):39742-8. doi: 10.1039/C8RA08403C
[45] Zhang X, Shao B, Guo A, Gao Z, Qin Y, Zhang C, et al. Improved electrochemical performance of
CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. Journal of Alloys and Compounds. 2021;862:158546. doi: org/10.1016/j.jallcom.2020.158546
[46] Liang W, Zhitomirsky I. MXene–carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. Journal of Materials Chemistry A. 2021;9(16):10335-44. doi: org/10.1039/D0TA12485K
[47] Ma L, Zhao T, Xu F, You T, Zhang X. A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density. Chemical Engineering Journal. 2021;405:126694. doi: org/10.1016/j.cej.2020.126694
[48] Mahmood M, Rasheed A, Ayman I, Rasheed T, Munir S, Ajmal S, et al. Synthesis of ultrathin MnO2 nanowire-intercalated 2D-MXenes for high-performance hybrid supercapacitors. Energy & Fuels. 2021;35(4):3469-78. doi: org/10.1021/acs.energyfuels.0c03939
[49] Chen X, Liu Y, Zhou Q, Su F. Facile synthesis of MnO2/Ti3C2Tx/CC as positive electrode of all‐solid‐state flexible asymmetric supercapacitor. ChemistrySelect. 2020;5(46):14768-75. doi: org/10.1002/slct.202004181
[50] Yu L, Hu L, Anasori B, Liu Y-T, Zhu Q, Zhang P, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Letters. 2018;3(7):1597-603 doi: org/10.1021/acsenergylett.8b00718
[51] Miao J, Zhu Q, Li K, Zhang P, Zhao Q, Xu B. Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. Journal of Energy Chemistry. 2021;52:243-50. doi: org/10.1016/j.jechem.2020.04.015
[52] Mirzaee M, Dehghanian C. Effect of different types of electrochemical methods on the super capacitor properties of thin graphene oxide reduced by electrochemical method. Journal of Advanced Materials and Technologies. 2020;9(2):35-42. doi: org/10.30501/jamt.2020.185410.1031