تهیه نانوچندسازه های سه جزئی آهن صفرظرفیتی-هگزافریت استرانسیم-گرافن برای حذف پادزیست سفتریاکسون از محلول آبی و بهینهسازی شرایط با طراحی باکس بنکن
محورهای موضوعی : شیمی تجزیهشادان امیری 1 , محمودرضا سهرابی 2 * , فرشته مطیعی 3
1 - دانشجوی دکتری شیمی تجزیه، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران.
2 - استاد تمام شیمی تجزیه، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
3 - استادیار شیمی کاربردی، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران.
کلید واژه: گرافن, آهن صفر ظرفیتی, سفتریاکسون, طراحی باکس بنکن, هگزافریت استرانسیم,
چکیده مقاله :
در این مطالعه، برای نخستین بار، نانوچندسازه آهن صفر ظرفیتی-هگزافریت استرانسیم-گرافن تهیه شد و به عنوان جاذبی برای حذف دارو سفتریاکسون از محیط آبی بررسی شد. جاذب های تهیهشده با میکروسکوپ الکترونی پویشی (SEM)، طیف سنجی فروسرخ تبدیل فوریه (FTIR) و پراش پرتو ایکس (XRD) شناسایی شدند. روش سطح پاسخ (RSM) مبتنی بر طراحی باکس بنکن (BBD) برای به دست آوردن شرایط بهینه آزمایشگاهی بهکارگرفته شد. بر این پایه، تاثیر عاملهایی مانند مقدار جاذب (05/0 تا 15/0 گرم بر لیتر)، pH (5 تا 9) و غلظت اولیه سفتریاکسون (5 تا 15 میلی گرم بر لیتر) بر بازده حذف دارو از آب بررسی شد. یک مدل ریاضی برای پیش بینی عملکرد حذف دارو مورد مطالعه قرار گرفت. اهمیت و کفایت مدل با تحلیل وردایی (ANOVA) بررسی شد. نتیجه ها نشان داد که مدل چند جمله ای درجه دوم یک مدل مناسب و کارآمد برای حذف آلاینده موردنظر از محیط آبی است. سرانجام، طراحی باکس بنکن پیش بینی کرد که مقدار جاذب 15/0 گرم بر لیتر، pH برابر با 5، غلظت اولیه دارو 10 میلی گرم بر لیتر با بازده 99 %، بهترین شرایط برای حذف داروی سفتریاکسون از محلول آبی است.
In this study, for the first time, zero-valent iron - strontium hexaferrite-graphene nanocomposite was synthesized and it was investigated as an adsorbent for removing ceftriaxone drug from aqueous solution. Synthesized adsorbents were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Response Surface Methodology (RSM) based on Box–Behnken Design (BBD) were used to achieve the optimal experimental conditions. Accordingly, the effects of parameters such as adsorbent dosage (0.05-0.15 g L-1), pH (5-9), and initial concentration of ceftriaxone (5-15 mg L-1) on removal efficiency were investigated. A mathematical model was surveyed to predict the performance of drug removal. The results indicated that the second-order polynomial model is an efficient model for the removal of the intended drug. Finally, the Box–Behnken Design predicted that the adsorbent dosage of 0.15 g L-1, pH =5, and the initial drug concentration of 10 mg L-1 with 99% efficiency was the best condition for the removal of ceftriaxone from the aqueous solution.
[1] Scold, O.; “Antibiotics and Antibiotics Resistance”, Wiley, New Jersey, 2011.
[2] Sayiner, H.S.; Bakir, T.; Kandemirli, F.; Bulgarian Chemical Communications 50, 398 – 404, 2018.
[3] Zhao, Y.; Liang, X.; Wang, Y.; Shi, H.; Liu, E.; Fan, J.; Hu, X.; Journal of Colloid and Interface Science 523, 7-17, 2018.
[4] Pinto, S.; Lanza, G.D.; Ardisson, J.D.; Lago, R.M..; Journal of the Brazilian Chemical Society 30, 1-8, 2018.
[5] Homem, V.; Santos, L.; Journal of Management 92, 2304-2347, 2011.
[6] Khorsandi, H.; Teymori, M.; Aghapour, A.A.; Jafari, S.J.; Taghipour, S.; Bargeshadi, R.; Applied Water Science 9, 81, 2019.
[7] Luiz Tambosi, J.; Felix de Sena, R.; Favier, M.; Desalination 261, 148–156, 2010.
[8] Fatta-Kassinos, D.; Meric, S.; Nikolaou, A.; Analytical and Bioanalytical Chemistry 399, 251-275, 2011.
[9] Simazaki, D.; Fujiwara, J.; Manabe, S.; Matsuda, M.; Asami, M.; Kunikane, S.; Water Science and Technology 58,1129-1135, 2008.
[10] Nasuhoglu, D.; Rodayan A.; Berk, D.; Yargeau, V.; Chemical Engineering Journal 189– 190, 41– 48, 2012.
[11] Davila-Estrada, M.; Ramírez-Garcia, J.J.; Solache-Rios, M.J.; Gallegos-Perez, J.L; Water, Air, & Soil Pollution 229, 123, 2018.
[12] Arya, V.; Philip, L.; Microporous and Mesoporous Materials 232, 273-280, 2016.
[13] Teixeira, S.; Delerue-Matos, C; Santos, L; Science of the Total Environment. 646,168–176, 2019.
[14] Ribeiro de Sousa, D.N.; Insa, S.; Aparecido Mozeto, A.; Petrovic, M; Faheina Chaves, T; Sergio Fadini, P.; Chemosphere 205, 137-146, 2018.
[15] Zhang, S.; Dong, Y.; Yang, Z.; Yang, W.; Wu, J.; Dong, C.; Chemical Engineering Journal 304, 325–334, 2016.
[16] Al-Khateeb, L.A.; Almotiry, S.; Abdel Salam, M.; Chemical Engineering 248, 191–199, 2014.
[17] Li, J.; Dou, X.; Qin, H.; Sun, Y.; Yin, D.; Guan, X.; Water Research 148, 70-85, 2019.
[18] Xiaoshu, L.V.; Yunjun, H.; Jie, T.; Tiantian, S.; Guangming, J.; Xinhua, X..; Chemical Engineering Journal 218, 55-64, 2013.
[19] Tang, X.; Wang, Y.M.; Luo, Z.; Wang, L.S.; Hong, R.Y.; Feng, W.G.; Progress in Organic Coatings 75, 124–130, 2012.
[20] Ashiq, M.N.; Qureshi, R.B.; Malana, M.A.; Ehsan, M.F; Journal of Alloys and Compounds 651, 266-272, 2015.
[21] Shi, L.; Yang, J.; Huang, Z.; Li, J.; Tang, Z.; Li, Y.; Applied Surface Science 276, 437-246, 2013.
[22] Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A; Talanta 76, 965-977, 2008.
[23] Hasani, K.; Peyghami, A.; Moharrami, A.; Vosoughi, M.; Dargahi, A.; Arabian Journal of Cchemistry 13, 6122-6139, 2020.
[24] Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; Analytica Chimica Acta 597, 179-186, 2007.
[25] Kumar Sahoo, J.; Konar, M.; Rath, J.; Kumar, D.; Sahoo, H.; Separation Science and Technology 55, 2-17, 2019.
[26] Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R.M.; Chhowalla, M.; The journal of Physical Chemistry 115, 19761-19781, 2011.
[27] Kumari, S.; Mankotia, D.; Chauhan, G.S; Journal of Environmental Chemical Engineering 4, 1126-1136, 2016.
[28] Gong, W.; Zhang, Y.; Zhang, Y.J.; Xu, G.; Wei, X.; Lee, K..; Journal of Central South University 14, 196–201, 2007.
[29] Sohrabi, M.R.; Amiri, S.; Fard Masoumi, H.R.; Moghri, M.; Journal of Industrial and Engineering Chemistry 20, 2535-2542, 2014.
[30] Kong, S.; Zhang, P.; Wen, X.; Particuology 6, 185-190, 2008.
[31] Rattana, T.; Chaiyakun, S.; Witit-anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P.; Procedia Engineering 32, 759 – 764, 2012.
[32] Lerf, A.; He, H.; Forster, M.; Klinowski, J.; The Journal of Physical Chemistry B. 102, 4477-4482, 1998.
[33] Hessien, M.M.; Rashad, M.M.; El-Barawy, K.; Journal of Magnetism and Magnetic Material 320, 336-343, 2008.
[34] Nikzad, A.; Ghasemi, A; Kavosh Tehrani, M.; Gordani, G.R.; Journal of Superconductivity and Novel Magnetism 28, 3579–3586, 2015.
[35] Monshi, A.; Foroughi, M.R.; Monshi, M.R.; World journal of Nano Science and Engineering 2, 154-160, 2012.
[36] Su, C.Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C.H; Chemistry of Material 21, 5674-80, 2009.
[37] Sabouri, M.R.; Sohrabi, M.R.; Zeraatkar Moghaddam, A.; cChemistry Select 5, 369-378, 2020.
[38] Oliveira, L.M.; Nascimento, M.A.; Guimaraes, Y.; Oliveira, A.F.; Silva, A.A.; Lopes, R.P.; Journal of the Brazilian Chemical Society 29, 1630-1637, 2018.
[39] Wu, Y.; Liu, W.; Wang, Y.; Hu, X.; He, Z.; Chen, X.; Zhao, Y.; International Journal of Environmental Research and Public Health 15, 2652, 2018.
[40] Vecchio, P.; Haro, N.; Souza, F.; Marcílio, N.; Féris, L.A.; Water Science & Technology 79, 2013–2021, 2019.
[41] Samarghandi, M.R.; Asgari, G.H.; Shokoohi, R.; Dargahi, A.; Arabkouhsar, A.; Desalination and Water Treatment 152, 306–315, 2019.
_||_[1] Scold, O.; “Antibiotics and Antibiotics Resistance”, Wiley, New Jersey, 2011.
[2] Sayiner, H.S.; Bakir, T.; Kandemirli, F.; Bulgarian Chemical Communications 50, 398 – 404, 2018.
[3] Zhao, Y.; Liang, X.; Wang, Y.; Shi, H.; Liu, E.; Fan, J.; Hu, X.; Journal of Colloid and Interface Science 523, 7-17, 2018.
[4] Pinto, S.; Lanza, G.D.; Ardisson, J.D.; Lago, R.M..; Journal of the Brazilian Chemical Society 30, 1-8, 2018.
[5] Homem, V.; Santos, L.; Journal of Management 92, 2304-2347, 2011.
[6] Khorsandi, H.; Teymori, M.; Aghapour, A.A.; Jafari, S.J.; Taghipour, S.; Bargeshadi, R.; Applied Water Science 9, 81, 2019.
[7] Luiz Tambosi, J.; Felix de Sena, R.; Favier, M.; Desalination 261, 148–156, 2010.
[8] Fatta-Kassinos, D.; Meric, S.; Nikolaou, A.; Analytical and Bioanalytical Chemistry 399, 251-275, 2011.
[9] Simazaki, D.; Fujiwara, J.; Manabe, S.; Matsuda, M.; Asami, M.; Kunikane, S.; Water Science and Technology 58,1129-1135, 2008.
[10] Nasuhoglu, D.; Rodayan A.; Berk, D.; Yargeau, V.; Chemical Engineering Journal 189– 190, 41– 48, 2012.
[11] Davila-Estrada, M.; Ramírez-Garcia, J.J.; Solache-Rios, M.J.; Gallegos-Perez, J.L; Water, Air, & Soil Pollution 229, 123, 2018.
[12] Arya, V.; Philip, L.; Microporous and Mesoporous Materials 232, 273-280, 2016.
[13] Teixeira, S.; Delerue-Matos, C; Santos, L; Science of the Total Environment. 646,168–176, 2019.
[14] Ribeiro de Sousa, D.N.; Insa, S.; Aparecido Mozeto, A.; Petrovic, M; Faheina Chaves, T; Sergio Fadini, P.; Chemosphere 205, 137-146, 2018.
[15] Zhang, S.; Dong, Y.; Yang, Z.; Yang, W.; Wu, J.; Dong, C.; Chemical Engineering Journal 304, 325–334, 2016.
[16] Al-Khateeb, L.A.; Almotiry, S.; Abdel Salam, M.; Chemical Engineering 248, 191–199, 2014.
[17] Li, J.; Dou, X.; Qin, H.; Sun, Y.; Yin, D.; Guan, X.; Water Research 148, 70-85, 2019.
[18] Xiaoshu, L.V.; Yunjun, H.; Jie, T.; Tiantian, S.; Guangming, J.; Xinhua, X..; Chemical Engineering Journal 218, 55-64, 2013.
[19] Tang, X.; Wang, Y.M.; Luo, Z.; Wang, L.S.; Hong, R.Y.; Feng, W.G.; Progress in Organic Coatings 75, 124–130, 2012.
[20] Ashiq, M.N.; Qureshi, R.B.; Malana, M.A.; Ehsan, M.F; Journal of Alloys and Compounds 651, 266-272, 2015.
[21] Shi, L.; Yang, J.; Huang, Z.; Li, J.; Tang, Z.; Li, Y.; Applied Surface Science 276, 437-246, 2013.
[22] Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A; Talanta 76, 965-977, 2008.
[23] Hasani, K.; Peyghami, A.; Moharrami, A.; Vosoughi, M.; Dargahi, A.; Arabian Journal of Cchemistry 13, 6122-6139, 2020.
[24] Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; Analytica Chimica Acta 597, 179-186, 2007.
[25] Kumar Sahoo, J.; Konar, M.; Rath, J.; Kumar, D.; Sahoo, H.; Separation Science and Technology 55, 2-17, 2019.
[26] Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R.M.; Chhowalla, M.; The journal of Physical Chemistry 115, 19761-19781, 2011.
[27] Kumari, S.; Mankotia, D.; Chauhan, G.S; Journal of Environmental Chemical Engineering 4, 1126-1136, 2016.
[28] Gong, W.; Zhang, Y.; Zhang, Y.J.; Xu, G.; Wei, X.; Lee, K..; Journal of Central South University 14, 196–201, 2007.
[29] Sohrabi, M.R.; Amiri, S.; Fard Masoumi, H.R.; Moghri, M.; Journal of Industrial and Engineering Chemistry 20, 2535-2542, 2014.
[30] Kong, S.; Zhang, P.; Wen, X.; Particuology 6, 185-190, 2008.
[31] Rattana, T.; Chaiyakun, S.; Witit-anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P.; Procedia Engineering 32, 759 – 764, 2012.
[32] Lerf, A.; He, H.; Forster, M.; Klinowski, J.; The Journal of Physical Chemistry B. 102, 4477-4482, 1998.
[33] Hessien, M.M.; Rashad, M.M.; El-Barawy, K.; Journal of Magnetism and Magnetic Material 320, 336-343, 2008.
[34] Nikzad, A.; Ghasemi, A; Kavosh Tehrani, M.; Gordani, G.R.; Journal of Superconductivity and Novel Magnetism 28, 3579–3586, 2015.
[35] Monshi, A.; Foroughi, M.R.; Monshi, M.R.; World journal of Nano Science and Engineering 2, 154-160, 2012.
[36] Su, C.Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C.H; Chemistry of Material 21, 5674-80, 2009.
[37] Sabouri, M.R.; Sohrabi, M.R.; Zeraatkar Moghaddam, A.; cChemistry Select 5, 369-378, 2020.
[38] Oliveira, L.M.; Nascimento, M.A.; Guimaraes, Y.; Oliveira, A.F.; Silva, A.A.; Lopes, R.P.; Journal of the Brazilian Chemical Society 29, 1630-1637, 2018.
[39] Wu, Y.; Liu, W.; Wang, Y.; Hu, X.; He, Z.; Chen, X.; Zhao, Y.; International Journal of Environmental Research and Public Health 15, 2652, 2018.
[40] Vecchio, P.; Haro, N.; Souza, F.; Marcílio, N.; Féris, L.A.; Water Science & Technology 79, 2013–2021, 2019.
[41] Samarghandi, M.R.; Asgari, G.H.; Shokoohi, R.; Dargahi, A.; Arabkouhsar, A.; Desalination and Water Treatment 152, 306–315, 2019.