Preliminary Design of a Pressurized Liquid Extraction Unit for Phytochemicals Extraction
Subject Areas : PolymerAazam Sasani 1 , Abbas Rashidi 2 *
1 - Department of Chemical Engineering, Faculty of Technology and Engineering, University of Mazandaran
2 - Department of Chemical Engineering, Faculty of Technology and Engineering, University of Mazandaran
Keywords:
Abstract :
In the present research, a Pressurized Liquid Extraction (PLE) unit has been preliminarily designed to extract bioactive compounds from medicinal plants. The design steps included: 1) Developing design baseswith general information about the process; 2) Preparing a concept processflow sheet in which the unit operation type, the required equipment, the main input and output flows and the flows related to the utilities are shown; 3) Determining the operational mode of the process; 4) Determining the type of equipment; and 5) Doing calculations and balancing energy and process materials. In this design, 500 kg of dried chopped plant and a combination of ethanol and water as solvent were used as input materials to the extractor. A batch mode is considered for the extraction operation and a continuous mode is considered for concentration operation. Unit operations were designed based on a fixed-bed extractor, and subsidiary equipment required were determined according to the desired conditions for the process also, falling film evaporator is used to concentrate the extract. By determining the flows, balancing the materials and energy, and doing the process-related calculations, the Process Flow Diagram (PFD) was finally obtained.
[1]. J.Azmir, I.S.M.Zaidul, M.M.Rahman, K.M.Sharif, A.Mohamed, F.Sahena, M.H.A.Jahurul,
K.Ghafoor, N.A.N.Norulaini, A.K.M.Omar, J. Food Eng., 117(4), 426 (2013).
[2]. M. Selvamuthukumaran, J. Shi, Food Qual. Saf., 1(1), 61 (2017).
[3]. M.B. Soquetta, L.D.M. Terra, C.P. Bastos, CyTAJ. Food, 16(1), 400 (2018).
[4]. K. Ameer, H.M. Shahbaz, J.H. Kwon, Compr. Rev. Food Sci. Food Saf., 16(2), 295 (2017).
[5]. Y.-F. Shang, K. Hyun Cha, E. Ha Lee, C.-H. Pan, B.-H. Um, Free Radicals Antioxid., 6(1), 64
(2015).
[6]. Z.Y. Ju, L.R. Howard, J. Agric. Food. Chem., 51(18), 5207 (2003).
[7]. A.P.D.F. Machado, J.L. Pasquel-Reátegui, G.F. Barbero, J. Martínez, Food Res. Int., 77, 675
(2015).
[8]. L. Howard, N.Pandjaitan, J. Food Sci., 73(3), C151 (2008).
[9]. S. Erdogan, B. Ates, G. Durmaz, I. Yilmaz, T. Seckin, Food Chem. Toxicol., 49(7), 1592
(2011).
[10]. Y. Jiang, S.P. Li, H.T. Chang, Y.T. Wang, P.F. Tu, J. Chromatogr. A, 1108(2), 268 (2006).
[11]. Z.A. Syahariza, A.E. Torkamani, H.M. Norziah, W.A.K. Mahmood, P. Juliano, Int. J. Food
Sci. Technol., 52(2), 480 (2017).
[12]. L. Foan, V. Simon, J. Chromatogr. A, 1256, 22 (2012).
[13]. A.D. Sousa, A.I.V. Maia, T.H.S. Rodrigues, K.M. Canuto, P.R.V. Ribeiro, R. de C.A. Pereira,
R.F. Vieira, E.S. de Brito,Ind. Crops Prod., 79, 91 (2016).
[14]. M.A. Rostagno, M. Palma, C.G. Barroso, Anal. Chim. Acta, 522(2), 169 (2004).
[15]. J. Hu, Z. Guo, M. Glasius, K. Kristensen, L. Xiao, X. Xu, J. Chromatogr. A, 1218(34), 5765
(2011).
[16]. J.L. Xu, T.J. Kim, J.-K. Kim, Y. Choi, Food Chem., 281, 261 (2019).
[17]. G. Zgórka, Talanta, 79(1), 46 (2009).
[18]. D.L. Luthria, J. Funct. Foods, 4(4), 842 (2012).
[19]. D.L. Luthria, Food Chem., 107(2), 745 (2008).
[20]. Y. Xu, F. Cai, Z. Yu, L. Zhang, X. Li, Y. Yang, G. Liu,Food Chem., 194, 650 (2016).
[21]. S. Mukhopadhyay, D.L.Luthria, R.J. Robbins, J. Sci. Food Agric., 86(1), 156 (2006).
[22]. H. Wu, M. Chen, Y. Fan, F. Elsebaei, Y. Zhu, Talanta, 88, 222 (2012).
[23]. D.T. Santos, P.C.Veggi, M.A.A.Meireles, J. Food Eng., 108(3), 444 (2012).
[24]. M. Søltoft, J.H. Christensen, J. Nielsen, P. Knuthsen, Talanta, 80(1), 269 (2009).
[25]. A.H.Zaibunnisa, S.Norashikin, S.Mamot, H.Osman, LWT Food Sci. Technol., 42(1), 233
(2009).
[26]. R.M. Alonso-Salces, A.Barranco, E.Corta, L.A.Berrueta, B. Gallo, F. Vicente,Talanta, 65(3),
654 (2005).
[27]. A. Mustafa, C. Turner, Anal. Chim. Acta, 703(1), 8 (2011).
[28]. M.S. Peters, K.D.Timmerhaus, R.E. West, Plant design and economics for chemical engineers,
McGraw-Hill, New York (2003).
[29]. B.E. Richter, B.A. Jones, J.L. Ezzell, N.L. Porter, N.Avdalovic, C.Pohl,Anal. Chem., 68(6),
1033 (1996).
[30]. A. Sae-Yun, C. Ovatlarnporn, A. Itharat, R. Wiwattanapatapee, J. Chromatogr. A, 1125(2),
172 (2006).
[31]. S. Koo, K. Cha, D. Song, D. Chung, C. Pan,J. Appl. Phycol., 24(4), 725 (2012).
[32]T.L.Miron, M. Plaza, G.Bahrim, E. Ibáñez, M. Herrero,J. Chromatogr. A, 1218(30), 4918
(2011).
[33]. Y.F. Shang, S.M. Kim, B.-H. Um, Food Chem., 154, 164 (2014).
[34]. R.B. Carl, Rules of Thumb for Chemical Engineers, Gulf Publishing Company, USA (1998).
[35]. E.E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants: Volume 2, Gulf
Professional Publishing, USA (1997).
[36]. C. Pronyk, G. Mazza, J. Food Eng., 95(2), 215 (2009).
[37]. R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya, Analysis, Synthesis
and Design of Chemical Processes. Pearson Education, USA (2008).
[38]. S. Hall, Rules of Thumb for Chemical Engineers. Butterworth-Heinemann, USA (2017).
[39]. M.N. Shatla, M. El Hady, Storage Tanks-Selection of Type, Design Code and Tank Sizing.
International conference of chemical engineering; Cairo (Egypt) (2004).
[40]. W. Tipasri, T.Wongwuttanasatian, Energy Procedia, 156, 254 (2019).
[41]. W.B. Glover, Chem. Eng. Prog., 100(12), 26 (2004).
[42]. G.Saravacos, A.E.Kostaropoulos, Handbook of food processing equipment, Springer,
Switzerland (2002).
[43]. H. Chen, Factors affecting heat transfer in the falling film evaporator. A thesis presented in
partial fulfillment of the requirements for the degree of Master of Technology in Food Technology
at Massey University. Massey University (1992).
[44]. Z.I. Stefanov, Fundamental modeling and control of falling film evaporators. PhD Thesis in
Chemical Engineering. Texas Tech University (2004).
[45]. A. Prakash, C. Patil, S.Vinodhini, A.Panneerselvam, V.D. Rajeswari, Engineering Approach in
Beverage Industry, in Engineering Tools in the Beverage Industry, Elsevier (2019).
[46]. E.S. Ong, S.M. Len, J. Chromatogr. Sci., 42(4), 211 (2004).
[47]. E.S. Ong, S.M. Len, Anal.Chim. Acta, 482(1), 81 (2003).
[48]. E.S. Ong, J. Sep. Sci., 25(13), 825 (2002).
[49]. N.Y. Qin, F.Q. Yang, Y.T. Wang, S.P. Li, J. Pharm. Biomed. Anal., 43(2), 486 (2007).
[50]. I.C.N. Debien, R. Vardanega, D.T. Santos, M.A.A. Meireles, Sep. Sci. Technol., 50(11), 1647
(2015).
[51]. R.M. Alonso-Salces, E. Korta, A. Barranco, L.A. Berrueta, B. Gallo, F. Vicente, J. Agric. Food
Chem., 49(8), 3761 (2001).
[52]. B. Benthin, H.Danz, M. Hamburger, J.Chromatogr. A, 837(1-2), 211 (1999).
[53]. E.-S. Ong, S.-O. Woo, Y.-L. Yong, J. Chromatogr. A, 904(1), 57 (2000).
[54]. A.P. da Fonseca Machado, C.A. Rezende, R.A. Rodrigues, G.F. Barbero, P. de Tarso Vieira e
Rosa, J. Martínez, Powder Technol., 340, 553 (2018).
[55]. A.G. da Silva Carvalho, M.T. da Costa Machado, V.M. da Silva, A. Sartoratto, R.A.F.
Rodrigues, M.D. Hubinger, Powder Technol., 294, 421 (2016).
[56]. Y.R.R.S. Rezende, J.P. Nogueira, N.J.F.C.Narain, Food Chem., 254, 281(2018).
[57]. E.Eroğlu, İ.Tontul, A.Topuz, J. Food Process. Preserv., 42(6), e13643 (2018).
[58]. M.E. Sormoli, T.A.G.Langrish, Innovative Food Sci. Emerg. Technol., 37(A), 27 (2016).
[59]. E. L. doCarmo, R.A.R. Teodoro, P.H.C. Félix, R.V. de BarrosFernandes, É. R. deOliveira,
T.R.L.A. Veiga, S. V. Borges, D.A. Botrel, Food Chem., 249, 51 (2018).
[60]. M.C.R. Salas, H.J.C.Velásquez, J.H.G. Gonzalez, Powder Technol., 321, 163 (2017).
[61]. C. Yamashita, M.M.S. Chung, C. dos Santos, C.R.M. Mayer, I.C.F. Moraes, I.G. Branco, LWT,
84, 256 (2017).
[62]. L.T.Chaul, E.C.Conceição, M.T.F.Bara, J.R.Paula, R.O.Couto, Revista Brasileira de
Farmacognosia, 27(2), 236 (2017).
[63]. T. Kuppan, Heat Exchanger Design Handbook, Marcel Dekker, Inc (2000).
[64]. M. Nitsche, R.O.Gbadamosi, Heat Exchanger Design Guide: A Practical Guide for Planning,
Selecting and Designing Shell and Tube Exchangers. Butterworth-Heinemann (2015).
[65]. H.S. Lee, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat
Exchangers, and Solar Cells, John Wiley & Sons (2010).
[66]. G. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of
Plant and Process Design. Elsevier (2012).
[67]. S. Rodríguez-Rojo, Antioxidants, 10(10), 1568 (2021).
[68]. Z. Mrkonjic, D. Rakic, M. Kaplan, N. Teslic, Z. Zekovic, B. Pavlic, Molecules, 26, 2548
(2021).