بررسی عملکرد انتقال حرارت جریان دو فازی نانوسیال در یک کلکتور خورشیدی سهموی با جاذب خارج از مرکز و عایق جامد
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیمجتبی جمعیتی 1 , حسین پورمحمدیان 2
1 - گروه فیزیک، واحد نراق، دانشگاه آزاد اسلامی، نراق، ایران،
2 - گروه مکانیک ، واحد نراق، دانشگاه آزاد اسلامی، نراق، ایران،
کلید واژه: تشعشع, کلکتور خورشیدی سهموی خطی, بهینهسازی انرژی, نانوسیال, عایق جامد,
چکیده مقاله :
در این مطالعه تحلیل میدان جریان و انتقال حرارت جریان دو فازی نانوسیال در یک کلکتور خورشیدی سهموی با جاذب خارج از مرکز و عایق جامد مورد بررسی قرار گرفته است. سیال مورد استفاده در این کلکتور نانوسیال آب- آلومینیم است. هدف اصلی پژوهش پیش رو، بررسی تأثیر استفاده از سیستم جاذب خارج از مرکز و عایق جامد بر بازده انرژی کلکتورهای سهموی خطی است. بدین منظور بازده انرژی برای حالتهای مختلف (شامل دمای محیط، دمای ورودی سیال، کسر حجمی نانوسیال، قطر نانوذرات و مشخصات هندسی) اندازهگیری و ارائه شدهاند. مطالعه در رژیم جریان آشفته بوده و به منظور مدل سازی آن از مدل توربولانسی k−ε استفاده شده است. به منظور حل معادلات بقا از روش حجم محدود و الگوریتم SIMPLE C استفاده شده است. مدلهای بهینه مختلف از نظر دارا بودن بیشترین بازده انرژی، معرفی شده و در نهایت براساس نتایج به دست آمده برترین مدل مشخص میشود. بر اساس نتایج بدست آمده بیشترین مقدار بازده انرژی در رینولدزهای مختلف، مربوط به کلکتور نوین و مدل دوفازی میشود. در جایگاههای بعدی بهترتیب، کلکتور نوین و مدل تکفازی، کلکتور پایه و مدل دوفازی و در انتها کلکتور پایه و مدل تکفازی قرار دارند. همچنین مشخص شد که با افزایش مقدار عدد رینولدز، تمامی حالات روند صعودی دارند. بیشینه مقدار بازده انرژی برای کلکتور نوین و مدل دوفازی در رینولدز 15000 بوده که مقدار آن برابر برابر 68٪ است. همچنین بیشینه مقدار بازده انرژی برای خروج از مرکز mm 20 در رینولدز 15000 بوده که مقدار آن برابر 9/74٪ است.
In this study, the flow field analysis and heat transfer of two-phase nanofluid flow in a parabolic solar collector with eccentric absorber and solid insulation have been investigated. The fluid used in this collector is nanofluid of water - Aluminium. The main aim of current study is to investigate the effect of using eccentric absorber system and solid insulation on the energy efficiency of linear parabolic collectors. For this purpose, energy efficiency has been measured and presented for different states (including ambient temperature, fluid inlet temperature, nanofluid volume fraction, nanoparticle diameter and geometric characteristics). The study is in turbulent flow regime and in order to model it, the k epsilon turbulence model has been used. In order to solve the survival equations, the finite volume method and the SIMPLE C algorithm have been used. Different optimal models are introduced in terms of having the highest energy efficiency, and the best model is determined. Based on obtained results, the highest energy efficiency in different Reynolds is related to the novel collector and two-phase model(TPM). In the next positions, respectively, are the novel collector and single-phase model(SPM), the basic collector and two-phase model, and at the end, the basic collector and single-phase model. It was also found that as the Reynolds number increases, all modes have an uptrend. The maximum amount of energy efficiency was for the novel collector and the two-phase model at Reynolds 15000, Which is equal to 68%. Also, the maximum energy efficiency for eccentricity 20 mm at Reynolds 15000, which is equal to 74.9%.
[1] Jamiati, M., Pourmohamadian, H., (2021), The effects of using two compound twisted tapes to enhance the performance of a parabolic trough solar collector, Journal of Mechanical Engineering and Vibration, 11(4). pp 59-70.
[2] Norouzi, A.M., Siavashi, M., Oskouei, M., (2020), Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles, Renewable Energy, 145(7). pp 569-584.
[3] Qiang, L., Yimin, X., (2002), convective heat transfer and flow characteristics of Cu-Water Nanofluid, Science China Technological Sciences, 45. pp 408-416.
[4] Lee, S.S., Choi, U., Li, S., Eastman, J., (1999), Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121(2). pp 280-289.
[5] Mahmoodi, M., Hashemi, S.M., (2012), Numerical study of natural convection of a nanofluid in C-shaped enclosures, International Journal of Thermal Sciences, 55. pp 76-89.
[6] Benabderrahmane, A., Benazza, A., Laouedj, S., Solano, J.P., (2017), Numerical analysis of compound heat transfer enhancement by single and two-phase models in parabolic through solar receiver, Mechanika, 23(1). pp 55-61.
[7] Chafie, M., Fadhel-Ben-Aissa, M., Guizani, A., (2017), Energetic end exergetic performance of a parabolic trough collector receiver: An experimental study, Journal of Cleaner Production, 171. pp 285-296.
[8] Azimi, B., (1988). Advanced Engineering Thermodynamics, New York, Wiley Inter science.
[9] Gupta, D., Saha, K.K., (1990), Energy Analysis of Solar Thermal Collectors, Renewable energy and environment, 33(1). pp 283-287.
[10] Pal-Chandra, Y., Singh, Kumar-Mohapatra, A.S., Kesari, J.P., & Rana, L., (2017), Numerical optimization and convective thermal loss analysis of improved solar parabolic trough collector receiver system with one sided thermal insulation, Solar Energy, 48. 14836.
[11] Mahanta, D.K., Kumar, S.S., (2002), Internal Irreversibility in a Water Heating Solar Flat Plate Collector, Energy Conversion and Management, 43(17). pp 2425-2435.
[12] Shingaki, N., Akiyama, T., Tsukihashi, F., (2002), Exergy Analysis of steel producion processes, Materials Transactions, 43(3). pp 379–384.
[13] Acevedo, L., Usón, S., Uche, J., (2015), Exergy transfer analysis of an aluminum holding furnace, Energy Conversion and Management, 89. pp 484–496.
[14] Mohamed, N., Khedidja, B., Belkacem, Z., & Michel, D., (2008), Numerical study of laminar forced convection in entrance region of a wavy channel, Numerical Heat Transfer: Part A, 53. pp 35-52.
[15] Valipour, M.S., Rashidi, S., Masoodi, R., (2014), Magnetohydrodynamics flow and heat transfer around a solid cylinder wrapped with a porous, Asme J Heat transfer, 136(6). pp 62601–62609.
[16] Srikanth, S., Dhiman, A.K., Bijjam, S., (2010), Confined flow and heat transfer across a triangular cylinder in a channel, Int J Therm Sci, 49. pp 2191–200.
[17] Ali, M., Zeitoun, O., Nuhait, A., (2011), Forced convection heat transfer over horizontal triangular cylinder in cross flow. Int J Therm Sci, 50. pp 106–114.
[18] Dhimana, A.K., Chhabraa, R. P., Eswaran, V., (2005), Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number, Int J Heat Mass Transf, 48. pp 4598–614.
[19] Valipour, M.S., Zare Ghadi, A., (2011), Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid, Int Commun Heat Mass Transfer, 38. pp 1296–304.
[20] Etminan-Farooji, Ebrahimnia-Bajestan, V.E., Niazmand, H., & Wongwises, S., (2012), Unconfined laminar nanofluid flow and heat transfe around a squarer cylinder, Int J Heat Mass Transf, 55. pp 1475–85.
[21] Dousset, V., Pothérat, A., (2008), Numerical simulations of a cylinder wake under a strong axial magnetic field, Phys. Fluids, 20. 017104.
[22] Chatterjee, D., Gupta., S.k., (2015), MHD flow and heat transfer behind a square cylinder in a duct under strong axial magnetic field, Int J Heat Mass Transf, 88. pp 1–13.
[23] Aminy, M., Aminzadeh, M., Haghgou, H., (2016), Optimized design and control system of linear parabolic trough collectors used in solar cooling at Material & Energy Research Center (MERC), Journal of Renewable and New Energy, 3(2). pp 45-56 (In Persian).
[24] Wang, G.V., Vanka, S., (1995), Convective heat transfer in periodic wavy passages, International Journal of Heat and Mass Transfer, 38. pp 3219-3230.
[25] Abdulhamed, A.J., Adam, N.M., Ab-Kadir, M.Z.A., & Hairuddin, A.A., (2018), Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications, Renewable and Sustainable Energy Reviews, 91. pp 822-831.
[26] Upadhyay, B.H., Patel, A.J., Ramana, P.V., (2019), A detailed review on solar parabolic trough collector, International Journal of Ambient Energy, 41(6). pp 942-946.
[27] Naphon, P., (2009), Effect of wavy plate geometry configurations on the temperature and flow distributions, International Communications in Heat and Mass Transfer, 36. pp 942-946.
[28] Batchelor, G., (1977), The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles, The Journal of Fluid Mechanics, 83. pp 97–117.
[29] Xuan, Y., Li, Q., Hu, W., (2003), gregation structure and thermal conductivity of nanofluids, AIChE Journal, 49(4). pp 1038-1043.
[30] Dudley, V., Kolb, G., Sloan, M., & Kearney, D., (1994), SEGS LS2 Solar Collector Test Results, Report of Sandia National Laboratories, Report, 94. 1884.
[31] Kaloudis, E., Papanicolaou, E., Belessiotis,V., (2016), Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model, Renewable Energy, 97. pp 218-229.