ارزیابی حساسیت به ترک گرم و خواص مکانیکی فلز جوش ER310 در اتصالات جوش فولاد زنگنزن 304 با اعمال لرزش الکترومغناطیس
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیمحمد امین قدم دزفولی 1 , رضا دهملایی 2 , سید رضا علوی زارع 3
1 - دانشگاه شهید چمران اهواز، گروه مهندسی مواد
2 - گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز ،اهواز، ایران
3 - گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز ،اهواز، ایران
کلید واژه: ترک گرم, لرزش الکترومغناطیس, فولاد زنگنزن آستنیتی, دندریت ستونی و هممحور, آزمون وارسترینت,
چکیده مقاله :
در این پژوهش تأثیر اعمال لرزش الکترومغناطیس همزمان با جوشکاری بر ریزساختار، خواص مکانیکی و حساسیت به ترک گرم فولاد زنگنزن 304 مورد مطالعه قرار گرفته است. جوشکاری با روش GTAW و با فلز پرکننده آستنیتی ER310 تحت اعمال لرزش الکترومغناطیس با ولتاژهای مختلف انجام گردید. بررسیهای ریزساختاری با استفاده از میکروسکوپهای نوری و الکترونی روبشی SEM انجام شد. خواص مکانیکی اتصال با آزمونهای ضربه و سختی سنجی و حساسیت به ترک گرم با آزمون وارسترینت طولی ارزیابی گردید. مطالعات ریزساختاری نشان داد که اعمال لرزش الکترومغناطیس باعث ریزتر شدن ریزساختار فلز جوش و تغییر حالت انجمادی از دندریتی ستونی درشت به دندریتی هممحور گردیده است. دلیل تغییر حالت انجمادی، ریز شدن ریزساختار ناشی از شکسته شدن نوک دندریتهای در حال رشد و افزایش مراکز جوانهزنی غیر همگن در مذاب و در نتیجه افزایش تعداد جوانهها در حین انجماد مذاب جوش تشخیص داده شد. نتایج نشان داد که در اثر اعمال لرزش الکترومغناطیس انرژی ضربهای از 104 به 165 ژول و سختی از 230 به 253 ویکرز در فلز جوش افزایش یافته است. نتایج آزمون وارسترینت طولی نشان داد که اعمال لرزش باعث کاهش حساسیت به ترک گرم در فلز جوش گردیده است و مجموع طول ترک از 8/18 میلیمتر در نمونه بدون لرزش به 3/8 میلیمتر در نمونه تحت لرزش 30 ولت کاهش پیدا کرده است.
[1] Jia-long, Y. Ying, L. Fu, W. Zheng-gui, Z. Si-jun, L., (2006), New Application of Stainless Steel, Journal of Iron and Steel Research, International 13(1) pp 62-66.
[2] Lippold, J.C., (2014), Welding metallurgy and weldability, John Wiley & Sons.
[3] Dehmolaei, R. Shamanian, M. Kermanpur, A., (2008), Effect of Electromagnetic Vibration on the Unmixed Zone Formation in 25Cr–35Ni Heat Resistant Steel/Alloy 800 Dissimilar Welds, Materials Characterization 59(12) pp 1814-1817.
[4] Kumar, S. Shahi, A.S., (2011), Effect of Heat Input on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints, Materials & Design 32(6) pp 3617-3623.
[5] Kou, S., (2003), Welding Metallurgy, John Wiley & Sons.
[6] Zheng, P., Lu, Q., Zhang, P., Yan, H., Zhao, j., Shi, H., (2021), Effect of Vibration on Microstructure and Fatigue Properties of 6082 CMT-Welded Joints, Transactions of the Indian Institute of Metals 74(9) pp 2149 - 2159.
[7] Singh, P.K., Prasad, S.B., Patel, S., (2021), Effect of Vibrations on Solidification Behavior and Mechanical Properties of Shielded Metal Arc Weld, Next Generation Materials and Processing Technologies 9 pp 209-219.
[8] Amra, M. Alavi Zaree, S. R. Dehmolaei, R., (2021), Dissimilar Welding Between 1.4742 Ferritic and 310S Austenitic Stainless Steels: Assessment of Oxidation Behaviour, Metals and Materials International 27 pp 931–945.
[9] Pourjafar, A. Dehmolaei, R., (2017), the Influence of Electromagnetic Vibration on the Microstructure and Corrosion Behavior of Incoloy 825 Superalloy Weld Metal, Journal of Environmental Friendly Materials 1(2) pp 7-13.
[10] Wahabi, M. El., Cabrera, J.M., Prado, J.M., (2003), Hot working of Two AISI 304 Steels: a Comparative Study, Materials Science and Engineering: A 343(1-2) pp 116-125.
[11] Lundin, C. Chou, C. Sullivan, C., (1980), Hot Cracking Resistance of Austenitic Stainless Steel Weld Metals, Welding Journal 59(8) pp 226s-232s.
[12] Dong, Z. Wei, Y. Xu, Y., (2006), Predicting Weld Solidification Cracks in Multipass Welds of SUS310 Stainless Steel, Computational Materials Science 38(2) pp 459-466.
[13] Balasubramanian, V. Ravisankar, V. Reddy, G.M., (2008), Effect of Pulsed Current Welding on Mechanical Properties of High Strength Aluminum Alloy, the International Journal of Advanced Manufacturing Technology 36(3-4) pp 254-262.
[14] Ghadam Dezfuli, M. A. Dehmolaei, R. Alavi Zaree, S. R., (2019), Microstructural Aspects of 304 Stainless Steel Weld Joints with the Simultaneous Application of Electromagnetic Vibration, Metallography, Microstructure, and Analysis 8 pp 226–232.
[15] Kuo, Ch. Lin, C. M. Lai, G. H. Chen, Y. C. Chang, Y. T. Wu, W., (2007), Characterization and Mechanism of 304 Stainless Steel Vibration Welding, Materials Transactions 48(9) pp 2319-2323.
[16] Hung, J.C., Lin, C.C., (2013), Investigations on the Material Property Changes of Ultrasonic Vibration Assisted Aluminum Alloy Upsetting, Materials & Design 45 pp 412–420.
[17] Cui, Y. Xu, C.L. Han, Q., (2006), Effect of Ultrasonic Vibration on Unmixed Zone Formation, Scripta Materialia 55 pp 975–978.
[18] Curiel, F.F. Garcia, R. Lopez, V.H. Gonzlez, J., (2011), Effect of Magnetic Field Applied During Gas Metal Arc Welding on the Resistance to Localised Corrosion of the Heat Affected Zone in AISI 304 Stainless Steel, Corrosion Science 53 pp 2393–2399.
[19] Wu, W., (2000), Influence of Vibration Frequency on Solidification of Weldments, Scripta mater 42 pp 661–665.
[20] Zhang, C., Zheng, S.Y., (2009), Effect of Ultrasonic Cavitation and its Application, Journal of Water Resources and Water Engineering 20 pp. 136–138.
[21] Wahabi, M. El. Cabrera, J.M. Prado, J.M., (2003), Hot Working of Two AISI 304 Steels: a Comparative Study, Materials Science and Engineering: A 343(1-2) pp 116-125.
[22] Lundin, C. Chou, C. Sullivan, C., (1980), Hot Cracking Resistance of Austenitic Stainless Steel Weld Metals, Welding Journal 59(8) pp 226s-232s.
[23] Jeng, Sh. L. Su, D.P. Lee, J. T. Huang, J.Y., (2018), Effects of Electromagnetic Stirring on the Cast Austenitic Stainless Steel Weldments by Gas Tungsten ArcWelding, Metals 8(8) 630.
[24] Watanabe, T. Shiroki, M. Yanagisawa, A. Sasaki, T., (2010), Improvement of Mechanical Properties of Ferritic Stainless Steel Weld Metal by Ultrasonic Vibration, Journal of Materials Processing Technology 210(12) pp 1646-1651.
[25] Thavamani, R. Balusamy, V. Nampoothiri, J. Subramanian, R. Ravi, K.R., (2018), Mitigation of Hot Cracking in Inconel 718 Superalloy by Uultrasonic Vibration During Gas Tungsten Arc Welding, Journal of Alloys and Compounds 740, pp 870-878.
[26] Liu, G., Du, D., Wang, K., Pu, Z., Chang, B., (2020), Hot cracking behavior and mechanism of the IC10 directionally solidified superalloy during laser re-melting, Vacuum 181, pp 257-271.
[1] Jia-long, Y. Ying, L. Fu, W. Zheng-gui, Z. Si-jun, L., (2006), New Application of Stainless Steel, Journal of Iron and Steel Research, International 13(1) pp 62-66.
[2] Lippold, J.C., (2014), Welding metallurgy and weldability, John Wiley & Sons.
[3] Dehmolaei, R. Shamanian, M. Kermanpur, A., (2008), Effect of Electromagnetic Vibration on the Unmixed Zone Formation in 25Cr–35Ni Heat Resistant Steel/Alloy 800 Dissimilar Welds, Materials Characterization 59(12) pp 1814-1817.
[4] Kumar, S. Shahi, A.S., (2011), Effect of Heat Input on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints, Materials & Design 32(6) pp 3617-3623.
[5] Kou, S., (2003), Welding Metallurgy, John Wiley & Sons.
[6] Zheng, P., Lu, Q., Zhang, P., Yan, H., Zhao, j., Shi, H., (2021), Effect of Vibration on Microstructure and Fatigue Properties of 6082 CMT-Welded Joints, Transactions of the Indian Institute of Metals 74(9) pp 2149 - 2159.
[7] Singh, P.K., Prasad, S.B., Patel, S., (2021), Effect of Vibrations on Solidification Behavior and Mechanical Properties of Shielded Metal Arc Weld, Next Generation Materials and Processing Technologies 9 pp 209-219.
[8] Amra, M. Alavi Zaree, S. R. Dehmolaei, R., (2021), Dissimilar Welding Between 1.4742 Ferritic and 310S Austenitic Stainless Steels: Assessment of Oxidation Behaviour, Metals and Materials International 27 pp 931–945.
[9] Pourjafar, A. Dehmolaei, R., (2017), the Influence of Electromagnetic Vibration on the Microstructure and Corrosion Behavior of Incoloy 825 Superalloy Weld Metal, Journal of Environmental Friendly Materials 1(2) pp 7-13.
[10] Wahabi, M. El., Cabrera, J.M., Prado, J.M., (2003), Hot working of Two AISI 304 Steels: a Comparative Study, Materials Science and Engineering: A 343(1-2) pp 116-125.
[11] Lundin, C. Chou, C. Sullivan, C., (1980), Hot Cracking Resistance of Austenitic Stainless Steel Weld Metals, Welding Journal 59(8) pp 226s-232s.
[12] Dong, Z. Wei, Y. Xu, Y., (2006), Predicting Weld Solidification Cracks in Multipass Welds of SUS310 Stainless Steel, Computational Materials Science 38(2) pp 459-466.
[13] Balasubramanian, V. Ravisankar, V. Reddy, G.M., (2008), Effect of Pulsed Current Welding on Mechanical Properties of High Strength Aluminum Alloy, the International Journal of Advanced Manufacturing Technology 36(3-4) pp 254-262.
[14] Ghadam Dezfuli, M. A. Dehmolaei, R. Alavi Zaree, S. R., (2019), Microstructural Aspects of 304 Stainless Steel Weld Joints with the Simultaneous Application of Electromagnetic Vibration, Metallography, Microstructure, and Analysis 8 pp 226–232.
[15] Kuo, Ch. Lin, C. M. Lai, G. H. Chen, Y. C. Chang, Y. T. Wu, W., (2007), Characterization and Mechanism of 304 Stainless Steel Vibration Welding, Materials Transactions 48(9) pp 2319-2323.
[16] Hung, J.C., Lin, C.C., (2013), Investigations on the Material Property Changes of Ultrasonic Vibration Assisted Aluminum Alloy Upsetting, Materials & Design 45 pp 412–420.
[17] Cui, Y. Xu, C.L. Han, Q., (2006), Effect of Ultrasonic Vibration on Unmixed Zone Formation, Scripta Materialia 55 pp 975–978.
[18] Curiel, F.F. Garcia, R. Lopez, V.H. Gonzlez, J., (2011), Effect of Magnetic Field Applied During Gas Metal Arc Welding on the Resistance to Localised Corrosion of the Heat Affected Zone in AISI 304 Stainless Steel, Corrosion Science 53 pp 2393–2399.
[19] Wu, W., (2000), Influence of Vibration Frequency on Solidification of Weldments, Scripta mater 42 pp 661–665.
[20] Zhang, C., Zheng, S.Y., (2009), Effect of Ultrasonic Cavitation and its Application, Journal of Water Resources and Water Engineering 20 pp. 136–138.
[21] Wahabi, M. El. Cabrera, J.M. Prado, J.M., (2003), Hot Working of Two AISI 304 Steels: a Comparative Study, Materials Science and Engineering: A 343(1-2) pp 116-125.
[22] Lundin, C. Chou, C. Sullivan, C., (1980), Hot Cracking Resistance of Austenitic Stainless Steel Weld Metals, Welding Journal 59(8) pp 226s-232s.
[23] Jeng, Sh. L. Su, D.P. Lee, J. T. Huang, J.Y., (2018), Effects of Electromagnetic Stirring on the Cast Austenitic Stainless Steel Weldments by Gas Tungsten ArcWelding, Metals 8(8) 630.
[24] Watanabe, T. Shiroki, M. Yanagisawa, A. Sasaki, T., (2010), Improvement of Mechanical Properties of Ferritic Stainless Steel Weld Metal by Ultrasonic Vibration, Journal of Materials Processing Technology 210(12) pp 1646-1651.
[25] Thavamani, R. Balusamy, V. Nampoothiri, J. Subramanian, R. Ravi, K.R., (2018), Mitigation of Hot Cracking in Inconel 718 Superalloy by Uultrasonic Vibration During Gas Tungsten Arc Welding, Journal of Alloys and Compounds 740, pp 870-878.
[26] Liu, G., Du, D., Wang, K., Pu, Z., Chang, B., (2020), Hot cracking behavior and mechanism of the IC10 directionally solidified superalloy during laser re-melting, Vacuum 181, pp 257-271.
_||_