تحلیل تنش اتصال چسبی تک لبه بر اساس مدل فوندانسیون سه پارامتری ویسکوالاستیک
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیمهدی ویسی تبار 1 , آرش رضا 2 , یونس شکاری 3
1 - گروه مهندسی مکانیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه مهندسی مکانیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
3 - گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران
کلید واژه: اتصال چسبی تک لبه, مدل فونداسیون سه پارامتری ویسکوالاستیک, تنش تورق, روش عددی تبدیل لاپلاس معکوس گیور- استفست.,
چکیده مقاله :
در این مطالعه، به بررسی توزیع تنش اتصال چسبی تک لبه با چسب شونده های ایزوتروپ و با استفاده از مدل فوندانسیون سه پارامتری ویسکوالاستیک پرداخته شده است. در این مدل تنش برشی در راستای ضخامت چسب ثابت و تنش قائم در این راستا متغیر فرض شده است. همچنین برای مدل سازی رفتار ویسکوالاستیک چسب از مدل زنر استفاده گردیده و معادلات دیفرانسیلی حاکم به کمک معادلات تعادل و ساختاری در فضای لاپلاس استخراج شده است. سپس به طور هم زمان معادلات مذکور حل و به کمک روش عددی لاپلاس معکوس گیور- استفست نتایج از فضای لاپلاس به فضای زمان تبدیل شده است. در انتها نتایج حاصل از تحلیل مذکور با نتایج المان محدود در یک اتصال نامتقارن مقایسه گردیده است که نتایج انطباق بسیار مناسبی را نشان می دهند. بیشترین کاهش تنش برشی در نیم میلیمتری انتهای ناحیه هم پوشانی در سمت چسب شونده برنجی و بیشترین کاهش تنش تورق با گذشت زمان در نیم میلیمتری انتهای ناحیه هم پوشانی در سمت چسب شونده آلومینیومی رخ می دهد. میزان کاهش تنش بعد از حدود 11 روز بسیار کاهش یافته و به حالت پایدار می رسد.
In this study evaluated stress distribution at the adhesively-bonded single-lap joints under tensile loading with isotropic adherends using a three-parameter viscoelastic foundation model. In this model, assumed shear stress is constant and peel stress is different along thickness of adhesive layer. In this study, the adhesive layer is modeled as a three-parameter viscoelastic foundation using the Zener model and the governing differential equations are derived using equilibrium equations and constitutive equations in Laplace’s domain. Then simultaneously solving them, the Gaver-Stehfest inverse Laplace transform method is used to obtain the equations in the time domain. At the end, results obtained of this model compare with the results of finite element that there are good agreement between them. Maximum reduction of shear stress occurs at 0.5mm last end of the overlap of Brass adherend and Maximum reduction of Pell stress occurs at 0.5mm last end of the overlap of Aluminum adherend. Reduction of stress with pass time after about 11 days near to zero and it stable.
]1] Her, S. C., (1999). Stress analysis of adhesively-bonded lap joints. Composite structures, 47(1-4), pp 673-678. [2] Kumar, S., Tampi, S., (2016). Modeling of single-lap composite adhesive joints under mechanical and thermal loads. Journal of Adhesion Science and Technology, 30(7), pp 759-783. [3] Shishesaz, M., Hosseini, M., (2020). Effects of joint geometry and material on stress distribution, strength and failure of bonded composite joints: an overview. The Journal of Adhesion. [4] Ferreira, L. R. F., Campilho, R. D. S. G., Rocha, R. J. B., Barbosa, D. R., (2019). Geometrical and material optimization of tensile loaded tubular adhesive joints using cohesive zone modelling. The Journal of Adhesion, 95(5-7), pp 425-449. [5] Valente, J. P. A., Campilho, R. D. S. G., Marques, E. A. S., Machado, J. J. M., Da Silva, L. F. M., (2019). Adhesive joint analysis under tensile impact loads by cohesive zone modelling. Composite Structures, 222, p 110894. [6] Wang, S., Guo, Q., Xie, Z., (2019). Extended analytical model for interfacial stresses of double-lap joints under harmonic loads. International Journal of Adhesion and Adhesives, 91, pp 23-35. [7] Saleh, M. N., Saeedifar, M., Zarouchas, D., De Freitas, S. T., (2020). Stress analysis of double-lap bi-material joints bonded with thick adhesive. International Journal of Adhesion and Adhesives, 97, p 102480. [8] Goland, M., & Reissner, E., (1944). The stresses in cemented joints. [9] Zhao, B., Lu, Z. H., Lu, Y. N., (2011). Closed-form solutions for elastic stress–strain analysis in unbalanced adhesive single-lap joints considering adherend deformations and bond thickness. International Journal of Adhesion and Adhesives, 31(6), pp 434-445. [10] Icardi, U., Sola, F., (2014). Analysis of bonded joints with laminated adherends by a variable kinematics layerwise model. International Journal of Adhesion and Adhesives, 50, pp 244-254. [11] Khan, M. A., Kumar, S., Reddy, J. N., (2018). Material-tailored adhesively bonded multilayers: A theoretical analysis. International Journal of Mechanical Sciences, 148, pp 246-262. [12] Liu, M., Dawood, M., (2018). A closed-form solution of the interfacial stresses and strains in steel beams strengthened with externally bonded plates using ductile adhesives. Engineering Structures, 154, pp 66-77. [13] Wang, S., Xie, Z., Li, X., (2021). On adhesively bonded stepped-scarf joint: an analytical model and its validation. Mechanics of advanced materials and structures, 28(9), pp 938-951. [14] Wang, J., Zhang, C., (2009). Three-parameter, elastic foundation model for analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives, 29(5), pp 495-502. [15] Guin, W. E., Wang, J., (2016). Theoretical model of adhesively bonded single lap joints with functionally graded adherends. Engineering Structures, 124, pp 316-332. [16] Amidi, S., Wang, J., (2019). An analytical model for interfacial stresses in double-lap bonded joints. The Journal of Adhesion. [17] Khalili, S. M. R., Jafarkarimi, M. H., Abdollahi, M. A., (2009). Creep analysis of fibre reinforced adhesives in single lap joints—Experimental study. International Journal of Adhesion and Adhesives, 29(6), pp 656-661. [18] Zhang, C., Wang, J., (2011). Viscoelastic analysis of FRP strengthened reinforced concrete beams. Composite structures, 93(12), pp 3200-3208. [19] Zhang, C., Wang, J., (2012). Interface stress redistribution in FRP-strengthened reinforced concrete beams using a three-parameter viscoelastic foundation model. Composites Part B: Engineering, 43(8), pp 3009-3019. [20] Shishesaz, M., Reza, A., (2013). The effect of viscoelasticity of polymeric adhesives on shear stress distribution in a single-lap joint. The Journal of Adhesion, 89(11), pp 859-880. [21] Shishesaz, M., Reza, A., (2013). The effect of viscoelasticity of adhesives on shear stress distribution in a double-lap joint using analytical method. Journal of adhesion science and technology, 27(20), pp 2233-2250. [22] Reza, A., Shishesaz, M., Naderan-Tahan, K., (2014). The effect of viscoelasticity on creep behavior of double-lap adhesively bonded joints. Latin American Journal of Solids and Structures, 11, pp 35-50. [23] Hamoodi-Tabar, M., Reza, A., (2021). Long-term shear stress distribution in adhesively bonded tubular joints under tensile load using the time-temperature superposition principle. The Journal of Adhesion, 97(4), pp 328-345. [24] Amidi, S., Wang, J., (2018). Three-parameter viscoelastic foundation model of adhesively bonded single-lap joints with functionally graded adherends. Engineering Structures, 170, pp 118-134. [25] Haddad Soleymani, S., Shishesaz, M., Mosalmani, R., (2019). Viscoelastic analysis of stress distribution in balanced and unbalanced adhesively bonded single-lap joints with functionally graded adherends under the Reddy model. Journal of Computational Applied Mechanics, 50(2), pp 341-357. [26] Khashaba, U. A., (2020). Dynamic analysis of scarf adhesive joints in carbon-fiber composites at different temperatures. AIAA Journal, 58(9), pp 4142-4157. [27] Timoshenko, S., Strength of materials—Part 1 (mechanical, strength of materials, engineerig). New York: D. Van Nostrand Company, 1940, p 170. [28] Delale, F., Erdogan, F., (1981). Viscoelastic analysis of adhesively bonded joints. [29] Cheng, S., Chen, D., Shi, Y., (1991). Analysis of adhesive-bonded joints with nonidentical adherends. Journal of engineering mechanics, 117(3), pp 605-623. [30] Reza, A., Shishesaz, M., (2018). The effect of viscoelasticity on the stress distribution of adhesively single-lap joint with an internal break in the composite adherends. Mechanics of Time-Dependent Materials, 22(3), pp 373-399. .