اثر pHبر فتوسنتز سیانوباکتری بومیFischerella sp.
محورهای موضوعی : ژنتیکشادمان شکروی 1 , ندا سلطانی 2 *
1 - گروه زیست شناسی ، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
2 - گروه پژوهشی میکروبیولوژی نفت، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، تهران، ایران
کلید واژه: اسیدیته, فتوسنتز, سیانوباکتری, فیزیولوژی,
چکیده مقاله :
سیانوباکتریFischerella sp. ، از معدود سیانوباکتریهای بومی ایران است که اطلاعات به نسبت کافی در خصوص عملکرد دستگاه فتوسنتزی آن در شرایط متفاوت اسیدیته و قلیاییت وجود دارد. این اطلاعات ماحصل بررسیهای انجام شده از 2004 تا زمان حاضر است. در این مقاله، مهم ترین نتایج مربوط به این مطالعات مورد توجه قرار گرفته است. بررسی نشان میدهد که این سیانوباکتری آلکالیفیل است. در شرایط قلیایی (pH 9) و شدت نوری محدود (2 میکرومول کوانتا بر مترمربع بر ثانیه) بالاترین میزان تصاعد اکسیژن مشاهده میگردد. در این شرایط شاخصهای آلفا و آی کا به بالاترین و پایین ترین میزان خود می رسد. بازدارندگی نوری تا شدت نوری 1400 میکرومول کوانتا بر متر مربع بر ثانیه مشاهده نمیگردد. کمپلکسهای جمعآوری کننده نور در هردو بخش فیکوبیلی زوم و کاروتنوییدها ساختار کامل دارند. فعالیت فتوسیستمها بخصوص فتوسیستم دو به حداکثر خود می رسد. نسبت فتوسیستم یک به دو در بالاترین حد است. گذار از این شرایط به سمت شرایط اسیدی سبب کاهش معنی دار تمامی شاخصهای مذکور میگردد. گذار به شرایط قلیایی افراطی (pH 11) در شوری بالاتر و پایین تر از 80 میلیمولار سبب آسیب به دستگاه فتوسنتزی، کاهش آزاد سازی اکسیژن و کاهش نسبت فتوسیستمی میگردد.
Stigonomatalean cyanobacterium Fischerella sp. is one of the few native strains in Iran that has relatively enough information about the operation of its photosynthetic machinery in different conditions of acidity and alkalinity. This information is the result of studies conducted from 2004 to the present. In this article, the most important results related to these articles are considered. The results show that this cyanobacterium is alkaliphile. Under alkaline condition (pH 9) and limited light intensities (2 micromoles of quanta per square meter per second), the highest rate of oxygen liberation is observed. Under these conditions, alpha and Ik reach their highest and lowest levels. Photoinhibition is not observed up to a light intensity of 1400 μmol quanta per square meter per second. Light-harvesting complexes are fully structured in both the phycobilisome and carotenoids. The activity of photosystems, especially photosystem two, reaches its maximum. The ratio of photosystem two to one is at the highest. The transition from these condition to acidic causes a significant reduction in all of these characters. Transition to extreme alkaline conditions (pH 11) at salinity higher and lower than 80 mM causes damage to the photosynthetic apparatus, oxygen liberation, and reduction of the photosystems ratio.
Abbasi, B., Shokravi. Sh., Golsefidi, M.Ah., Sateiee, A., and Kiaei, E. (2019). Effects of alkalinity, extremely low carbon dioxide concentration and irradiance on spectral properties, phycobilisome, photosynthesis, photosystems and functional groups of the native cyanobacterium Calothrix sp. ISC 65. International Journal of Algae. 29 (1): 40-58.
Adir, N., Bar-Zvi, S. and Harris, D. (2020). The amazing phycobilisome. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1861(4):148047. doi: 10.1016/j.bbabio.2019.07.002.
Ahmed, F. and Fakhruddin, A.N.M. (2018). A review on environmental contamination of petroleum hydrocarbons and its biodegradation. International Journal of Environmental Sciences & Natural Resources. 11(3): 1-7.
Ahmed, H., Pathak, J., Sonkar, P.K., Ganesan, V., Häder, D.P. and Sinha, R.P. (2021). Responses of a hot spring cyanobacterium under ultraviolet and photosynthetically active radiation: photosynthetic performance, antioxidative enzymes, mycosporine-like amino acid profiling 16 and its antioxidative potentials. Biotechnology. 11(1): 1-23.
Alcorta, J., Vergara-Barros, P., Antonaru, L.A., Alcamán-Arias, M.E., Nürnberg, D.J. and Díez, B. (2019). Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles. 23(6): 635-647.
Amirlatifi, F., Soltani, N., Saadatmand, S., Shokravi, S. and Dezfulian, M. (2013). Crude oil-induced morphological and physiological responses in cyanobacterium Microchaete tenera ISC13. International Journal of Environmental Research. 7(4): 1007-1014.
Amirlatifi, H.S., Shokravi, S., Sateei, A., Golsefidi, M.A. and Mahmoudjanlo, M. (2018). Samples of Cyanobacterium Calothrix sp. ISC 65 Collected from Oil Polluted Regions Respond to Combined Effects of Salinity, Extremely Low-Carbon Dioxide Concentration and Irradiance. International Journal on Algae. 20(2): 193-210.
Anagnostidis, K. (1990) Modern approach to the classification system of Cyanophytes, 5- Stigonematales. Algological studies. 59: 1-73.
Badger, M.R. and Price, G.D. (1992). The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiologia Plantarum. 84(4): 606-615.
Bouazzara, H., Benaceur, F., Chaibi, R., Boussebci, I. and Bruno, L. (2020). Combined effect of temperature, pH and salinity variation on the growth rate of Gloeocapsa sp. in batch culture method using Aiba and Ogawa medium. EurAsian Journal of BioSciences. 14(2): 7101-7109.
Boyd, C.E. (2015). pH, carbon dioxide, and alkalinity. In Water Quality (pp. 153-178). Springer, Cham.
Chittora, D., Meena, M., Barupal, T., Swapnil, P. and Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and biophysics reports. 22: doi.org/10.1016/j.bbrep.2020.100737.
Das, N. and Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international. doi:10.4061/2011/941810.
Fraser, J.M., Tulk, S.E., Jeans, J.A., Campbell, D.A., Bibby, T.S. and Cockshutt, A.M. (2013). Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS One. 8(3): 859-861.
Ghasemi, Y., Rasoul_Amini, S., Naseri, A. T., Montazeri_Najafabady, N., Mobasher, M.A. and Dabbagh, F. (2012). Microalgae biofuel potentials (Review). Applied Biochemistry and Microbiology. 48(2): 126- 144.
Inoue-Kashino, N., Kashino, Y., Satoh, K., Terashima, I. and Pakrasi, H.B. (2005). PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry. 44(36): 12214-12228.
Kiaei, E., Soltani, N., Mazaheri assadi, M., Khavarinejad, R. A. and Dezfulian, M. (2015) Screening of Cyanobacterial Strains as a Smart Choice for Biodiesel. Journal of Appllied and Environmental Biological Science. 5(8): 236-245.
Li, Y., Lin, Y., Loughlin, P.C. and Chen, M. (2014). Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f. Frontiers in Plant Science. (5): 67. doi.org/10.3389/fpls.2014.00067.
MacKenzie, T.D., Burns, R.A. and Campbell, D.A. (2004). Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatus. Plant physiology. 136(2): 3301-3312.
Mangan, N.M. and Brenner, M.P. (2014). Systems analysis of the CO2 concentrating mechanism in cyanobacteria. Elife. (3):20-43.
Müller, C., Reuter, W., Wehrmeyer, W., Dau, H. and Senger, H. (1993). Adaptation of the Photosynthetic Apparatus of Anacystis nidulans to Irradiance and CO2‐Concentration. Botanica acta. 106(6): 480-487.
Nygård, C.A. and Dring, M.J. (2008). Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. European Journal of Phycology. 43(3): 253-262.
Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E. and Madamwar, D. (2011). Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource technology, 102(22): 10163-10172.
Poza-Carrión, C., Fernández-Valiente, E., Piñas, F.F. and Leganés, F. (2001). Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM206 to combined fluctuations of irradiance, pH, and inorganic carbon availability. Journal of Plant Physiology. 158(11): 1455-1461.
Radway, J.C., Weissman, J.C., Wilde, E.W. and Benemann, J.R. (1992). Exposure of Fischerella [Mastigocladus] to high and low temperature extremes: strain evaluation for a thermal mitigation process. Journal of applied phycology. 4(1): 67-77.
Ramírez, M., Hernández-Mariné, M., Mateo, P., Berrendero, E. and Roldán, M. (2011). Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments. Fottea. 11(1): 73-86.
Safaie Katoli, M., Nejad–Sattari, T., Majd, A. and Shokravi, Sh. (2015). Physiological, morphological and ultrastructural responses of cyanobacterium Fischerella sp. FS 18 to combination effects of extreme conditions. Journal Apply Environment Biology Science. 5(1):
135-149.
Shokravi, S. and Bahavr, N. (2021). Growth and photosynthesis acclimated response of the cyanobacterium Fischerella sp. FS 18 exposed to extreme conditions: alkaline pH, limited irradiance, and carbon dioxide concentration; Extremophile, DOI: 10.1007/s00792-021-01244-x
Shokravi, S. and Soltani, N. (2011). Acclimation of the Hapalosiphon sp. (Cyanoprokaryota) to Combination Effects of Dissolved Inorganic Carbon and pH at Extremely Limited Irradiance. International Journal on Algae. 13(4): 379-391.
Singh, J.S., Kumar, A., Rai, A.N. and Singh, D.P. (2016). Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in microbiology. 7 (20): 529. doi.org/10.3389/fmicb.2016.00529.
Soltani, N., Khavari-Nejad, R.A., Yazdi, M.T., Shokravi, S. and Fernández-Valiente, E. (2006). Variation of nitrogenase activity, photosynthesis and pigmentation of the cyanobacterium Fischerella ambigua strain FS18 under different irradiance and pH values. World Journal of Microbiology and Biotechnology. 22(6): 571-576.
Soltani, N., Siahbalaie, R. and Shokravi, S. (2010). A New Description of Fischerella Ambigua (Näg.) Gom.− a Multidisciplinary Approach. International Journal on Algae. 12(1): 19-36.
Stal, L.J. (2017). The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium Fischerella sp. Scientific report. 7(1): 1-10.
Sugiura, K. and Itoh, S. (2012). Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells. Plant and Cell Physiology. 53(8): 1492-1506.
Tiwari, S. and Mchanty, P. (1996). Cobalt induced changes in photosystem activity in Synechocystis PCC 6803: Alterations in energy distribution and stoichiometry. Photosynthesis research. 50(3): 243-256.
Valiente, E.F. and Leganes, F. (1990). Regulatory effect of pH and incident irradiance on the levels of nitrogenase activity in the cyanobacterium Nostoc UAM 205. Journal of plant physiology, 135(5): 623-627.
Vermaas, W.F., Timlin, J.A., Jones, H.D., Sinclair, M.B., Nieman, L.T., Hamad, S.W., Melgaard, D.K. and Haaland, D.M. (2008). In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proceedings of the National Academy of Sciences. 105(10): 4050-4055.
Watanabe, M., Semchonok, D.A., Webber-Birungi, M.T., Ehira, S., Kondo, K., Narikawa, R., Ohmori, M., Boekema, E.J. and Ikeuchi, M. (2014). Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobacteria. Proceedings of the National Academy of Sciences. 111(7): 2512-2517.
Young, E.B. and Beardall, J. (2005). Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability. Canadian Journal of Botany. 83(7): 917-928.
Zorz, J.K., Allanach, J.R., Murphy, C.D., Roodvoets, M.S., Campbell, D.A. and Cockshutt, A.M. (2015). The RUBISCO to photosystem II ratio limits the maximum photosynthetic rate in picocyanobacteria. Life. 5(1): 403-417.
_||_
Abbasi, B., Shokravi. Sh., Golsefidi, M.Ah., Sateiee, A., and Kiaei, E. (2019). Effects of alkalinity, extremely low carbon dioxide concentration and irradiance on spectral properties, phycobilisome, photosynthesis, photosystems and functional groups of the native cyanobacterium Calothrix sp. ISC 65. International Journal of Algae. 29 (1): 40-58.
Adir, N., Bar-Zvi, S. and Harris, D. (2020). The amazing phycobilisome. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1861(4):148047. doi: 10.1016/j.bbabio.2019.07.002.
Ahmed, F. and Fakhruddin, A.N.M. (2018). A review on environmental contamination of petroleum hydrocarbons and its biodegradation. International Journal of Environmental Sciences & Natural Resources. 11(3): 1-7.
Ahmed, H., Pathak, J., Sonkar, P.K., Ganesan, V., Häder, D.P. and Sinha, R.P. (2021). Responses of a hot spring cyanobacterium under ultraviolet and photosynthetically active radiation: photosynthetic performance, antioxidative enzymes, mycosporine-like amino acid profiling 16 and its antioxidative potentials. Biotechnology. 11(1): 1-23.
Alcorta, J., Vergara-Barros, P., Antonaru, L.A., Alcamán-Arias, M.E., Nürnberg, D.J. and Díez, B. (2019). Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles. 23(6): 635-647.
Amirlatifi, F., Soltani, N., Saadatmand, S., Shokravi, S. and Dezfulian, M. (2013). Crude oil-induced morphological and physiological responses in cyanobacterium Microchaete tenera ISC13. International Journal of Environmental Research. 7(4): 1007-1014.
Amirlatifi, H.S., Shokravi, S., Sateei, A., Golsefidi, M.A. and Mahmoudjanlo, M. (2018). Samples of Cyanobacterium Calothrix sp. ISC 65 Collected from Oil Polluted Regions Respond to Combined Effects of Salinity, Extremely Low-Carbon Dioxide Concentration and Irradiance. International Journal on Algae. 20(2): 193-210.
Anagnostidis, K. (1990) Modern approach to the classification system of Cyanophytes, 5- Stigonematales. Algological studies. 59: 1-73.
Badger, M.R. and Price, G.D. (1992). The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiologia Plantarum. 84(4): 606-615.
Bouazzara, H., Benaceur, F., Chaibi, R., Boussebci, I. and Bruno, L. (2020). Combined effect of temperature, pH and salinity variation on the growth rate of Gloeocapsa sp. in batch culture method using Aiba and Ogawa medium. EurAsian Journal of BioSciences. 14(2): 7101-7109.
Boyd, C.E. (2015). pH, carbon dioxide, and alkalinity. In Water Quality (pp. 153-178). Springer, Cham.
Chittora, D., Meena, M., Barupal, T., Swapnil, P. and Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and biophysics reports. 22: doi.org/10.1016/j.bbrep.2020.100737.
Das, N. and Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international. doi:10.4061/2011/941810.
Fraser, J.M., Tulk, S.E., Jeans, J.A., Campbell, D.A., Bibby, T.S. and Cockshutt, A.M. (2013). Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS One. 8(3): 859-861.
Ghasemi, Y., Rasoul_Amini, S., Naseri, A. T., Montazeri_Najafabady, N., Mobasher, M.A. and Dabbagh, F. (2012). Microalgae biofuel potentials (Review). Applied Biochemistry and Microbiology. 48(2): 126- 144.
Inoue-Kashino, N., Kashino, Y., Satoh, K., Terashima, I. and Pakrasi, H.B. (2005). PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry. 44(36): 12214-12228.
Kiaei, E., Soltani, N., Mazaheri assadi, M., Khavarinejad, R. A. and Dezfulian, M. (2015) Screening of Cyanobacterial Strains as a Smart Choice for Biodiesel. Journal of Appllied and Environmental Biological Science. 5(8): 236-245.
Li, Y., Lin, Y., Loughlin, P.C. and Chen, M. (2014). Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f. Frontiers in Plant Science. (5): 67. doi.org/10.3389/fpls.2014.00067.
MacKenzie, T.D., Burns, R.A. and Campbell, D.A. (2004). Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatus. Plant physiology. 136(2): 3301-3312.
Mangan, N.M. and Brenner, M.P. (2014). Systems analysis of the CO2 concentrating mechanism in cyanobacteria. Elife. (3):20-43.
Müller, C., Reuter, W., Wehrmeyer, W., Dau, H. and Senger, H. (1993). Adaptation of the Photosynthetic Apparatus of Anacystis nidulans to Irradiance and CO2‐Concentration. Botanica acta. 106(6): 480-487.
Nygård, C.A. and Dring, M.J. (2008). Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. European Journal of Phycology. 43(3): 253-262.
Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E. and Madamwar, D. (2011). Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource technology, 102(22): 10163-10172.
Poza-Carrión, C., Fernández-Valiente, E., Piñas, F.F. and Leganés, F. (2001). Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM206 to combined fluctuations of irradiance, pH, and inorganic carbon availability. Journal of Plant Physiology. 158(11): 1455-1461.
Radway, J.C., Weissman, J.C., Wilde, E.W. and Benemann, J.R. (1992). Exposure of Fischerella [Mastigocladus] to high and low temperature extremes: strain evaluation for a thermal mitigation process. Journal of applied phycology. 4(1): 67-77.
Ramírez, M., Hernández-Mariné, M., Mateo, P., Berrendero, E. and Roldán, M. (2011). Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments. Fottea. 11(1): 73-86.
Safaie Katoli, M., Nejad–Sattari, T., Majd, A. and Shokravi, Sh. (2015). Physiological, morphological and ultrastructural responses of cyanobacterium Fischerella sp. FS 18 to combination effects of extreme conditions. Journal Apply Environment Biology Science. 5(1):
135-149.
Shokravi, S. and Bahavr, N. (2021). Growth and photosynthesis acclimated response of the cyanobacterium Fischerella sp. FS 18 exposed to extreme conditions: alkaline pH, limited irradiance, and carbon dioxide concentration; Extremophile, DOI: 10.1007/s00792-021-01244-x
Shokravi, S. and Soltani, N. (2011). Acclimation of the Hapalosiphon sp. (Cyanoprokaryota) to Combination Effects of Dissolved Inorganic Carbon and pH at Extremely Limited Irradiance. International Journal on Algae. 13(4): 379-391.
Singh, J.S., Kumar, A., Rai, A.N. and Singh, D.P. (2016). Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in microbiology. 7 (20): 529. doi.org/10.3389/fmicb.2016.00529.
Soltani, N., Khavari-Nejad, R.A., Yazdi, M.T., Shokravi, S. and Fernández-Valiente, E. (2006). Variation of nitrogenase activity, photosynthesis and pigmentation of the cyanobacterium Fischerella ambigua strain FS18 under different irradiance and pH values. World Journal of Microbiology and Biotechnology. 22(6): 571-576.
Soltani, N., Siahbalaie, R. and Shokravi, S. (2010). A New Description of Fischerella Ambigua (Näg.) Gom.− a Multidisciplinary Approach. International Journal on Algae. 12(1): 19-36.
Stal, L.J. (2017). The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium Fischerella sp. Scientific report. 7(1): 1-10.
Sugiura, K. and Itoh, S. (2012). Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells. Plant and Cell Physiology. 53(8): 1492-1506.
Tiwari, S. and Mchanty, P. (1996). Cobalt induced changes in photosystem activity in Synechocystis PCC 6803: Alterations in energy distribution and stoichiometry. Photosynthesis research. 50(3): 243-256.
Valiente, E.F. and Leganes, F. (1990). Regulatory effect of pH and incident irradiance on the levels of nitrogenase activity in the cyanobacterium Nostoc UAM 205. Journal of plant physiology, 135(5): 623-627.
Vermaas, W.F., Timlin, J.A., Jones, H.D., Sinclair, M.B., Nieman, L.T., Hamad, S.W., Melgaard, D.K. and Haaland, D.M. (2008). In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proceedings of the National Academy of Sciences. 105(10): 4050-4055.
Watanabe, M., Semchonok, D.A., Webber-Birungi, M.T., Ehira, S., Kondo, K., Narikawa, R., Ohmori, M., Boekema, E.J. and Ikeuchi, M. (2014). Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobacteria. Proceedings of the National Academy of Sciences. 111(7): 2512-2517.
Young, E.B. and Beardall, J. (2005). Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability. Canadian Journal of Botany. 83(7): 917-928.
Zorz, J.K., Allanach, J.R., Murphy, C.D., Roodvoets, M.S., Campbell, D.A. and Cockshutt, A.M. (2015). The RUBISCO to photosystem II ratio limits the maximum photosynthetic rate in picocyanobacteria. Life. 5(1): 403-417.