ارزیابی اثر روی و سیلیس به روشهای محلولپاشی نانوذرات و خاکمصرف بر برخی از صفات فیزیولوژیکی گیاه برنج (Oryza sativa L.)
محورهای موضوعی : ژنتیکنوراله خیری 1 , حسین عجم نوروزی 2 * , حمیدرضا مبصر 3 , بنیامین ترابی 4
1 - گروه کشاورزی، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
2 - گروه کشاورزی، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
3 - گروه کشاورزی، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران
4 - گروه کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
کلید واژه: برنج, کلروفیل, پروتئین, نانوذرات, جذب عناصر غذایی, خاکمصرف,
چکیده مقاله :
بهمنظور بررسی اثر روشهای کاربرد روی و سیلیس بر برخی صفات فیزیولوژیکی گیاه برنج رقم طارم هاشمی، آزمایشی در سال 1395 در شهرستان نور به صورت طرح بلوکهای کامل تصادفی با 16 تیمار در سه تکرار اجرا گردید. تیمارهای آزمایش شامل T1: شاهد، T2: کاربرد خاکی سیلیکات کلسیم، T3: کاربرد خاکی سولفات روی، T4: سیلیکات کلسیم + سولفات روی، T5: محلولپاشی نانوسیلیکون، T6: محلولپاشی نانوسیلیکون + کاربرد خاکی سیلیکات کلسیم، T7: محلولپاشی نانوسیلیکون + کاربرد خاکی سولفات روی، T8: محلولپاشی نانوسیلیکون + کاربرد خاکی سیلیکات کلسیم + سولفات روی، T9: محلولپاشی نانواکسید روی، T10: محلولپاشی نانواکسید روی + کاربرد خاکی سیلیکات کلسیم، T11: محلولپاشی نانواکسید روی + کاربرد خاکی سولفات روی، T12: محلولپاشی نانواکسید روی + کاربرد خاکی سیلیکات کلسیم + سولفات روی، T13: محلولپاشی نانوسیلیکون + نانواکسید روی، T14: محلولپاشی نانوسیلیکون + نانواکسید روی + کاربرد خاکی سیلیکات کلسیم، T15: محلولپاشی نانوسیلیکون + نانواکسید روی + کاربرد خاکی سولفات روی و T16: محلولپاشی نانوسیلیکون + نانواکسید روی + کاربرد خاکی سیلیکات کلسیم + سولفات روی بودند. نتایج نشان داد تیمارهای آزمایش اثر معنیداری بر صفات میزان پروتئین کاه، روی دانه و کاه و سیلیس دانه و کاه داشتند ولی میزان پروتئین دانه و کلروفیل برگ پرچم تحت تأثیر تیمارهای آزمایش قرار نگرفتند. در بین تیمارهای مورد بررسی، مصرف توأم سیلیس و روی منجر به بهبود جذب عناصر غذایی در مقایسه با کاربرد جداگانه عناصر و شاهد شد. این نشاندهنده جمعپذیری ترکیبات روی و سیلیس و اثر همافزایی آنها میباشد. کاربرد ترکیبی عناصر سیلیس و روی با هر دو روش محلولپاشی نانوذره و خاککاربرد (T16) سبب بهبود میزان جذب عناصر غذایی در دانه و کاه برنج گردید ولی در بین روشهای مورد استفاده، محلولپاشی نانوذرات اثرات مثبت بیشتری در بهبود خصوصیات فیزیولوژیکی گیاه برنج نسبت به تیمارهای خاککاربرد عناصر داشت.
To evaluate the effect of various application methods of zinc (Zn) and silicon (Si) on some physiological traits of rice (cv. Tarom Hashemi), a field experiment was carried out as factorial based on randomized complete block design with 16 treatments and three replications in Nour in 2016. The experimental treatments included T1: Control, T2: Calcium silicate soil application, T3: Zinc sulfate soil application, T4: Calcium silicate + Zinc sulfate, T5: Nano-Si foliar application, T6: Nano-Si + Calcium silicate, T7: Nano-Si + Zinc sulfate, T8: Nano-Si + Calcium silicate + Zinc sulfate, T9: Nano-Zn oxide foliar application, T10: Nano-Zn oxide + Calcium silicate, T11: Nano-Zn oxide + Zinc sulfate, T12: Nano-Zn oxide + Calcium silicate + Zinc sulfate, T13: Nano-Si + Nano-Zn oxide, T14: Nano-Si + Nano-Zn oxide + Calcium silicate, T15: Nano-Si + Nano-Zn oxide + Zinc sulfate and T16: Nano-Si + Nano-Zn oxide + Calcium silicate + Zinc sulfate. Results showed that straw protein, zinc and silicon in grain and straw were affected by experimental treatments, but the evaluated treatments showed no significant effect on grain protein and chlorophyll content of flag leaf. Among evaluated treatments, the combined application of silicon and zinc improved nutrient absorption compared to separate application of each element and control. This indicates the aggregation of Zn and Si compounds and their synergistic effects. Combined application of silicon and zinc by both methods of NP foliar application and soil application (T16) improved nutrients uptake in grain and straw of rice, but among the methods used, the NP foliar application had a more positive effects in improving physiological characteristics of rice plants than the treatments of soil application of elements.
Afshar, I., Rahimi Haghighi, A. and Shirazi, M. )2014(. Comparison the effects of spraying different amounts of nano zink oxide and zink oxide on wheat. Environmental Sciences. 4(3): 688-693.
Agricultural Statistics. (2016). Ministry of Agriculture Jihad, Deputy of Planning and Economics, ICT. Tehran. Iran. Vol 1: Agronomic Crops. 163p.
Alharby, H.F., Metwali, E.M.R., Fuller, M.P. and Aldhebiani, A. (2016). Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum L.) under salt stress. Archives of Biological Sciences. 68(4): 723-735.
Bazilevich, N.I. (1993). The biological productivity of north Eurasian ecosystems. RAS Institute of Geography, Nayka, Moscow.
Chang, HB., Win, L. and Huang, HJ. (2005). Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regulation. 46(3): 261-266.
Chinnamuthu, C.R. and Boopathi, M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal. 96: 17-31.
Choi, S., Jun, H., Bang, J., Chung, S.H., Kim, Y., Kim, B.S., Kim, H., Beuchat, L.R. and Ryu, J.H. (2015). Behavior of Aspergillus flavus and Fusarium graminearum on rice as affected by degree of milling, temperature, and relative humidity during storage. Food Microbiology.46: 307-313.
Dwivedi, R. and Srivastva, P.C. (2014). Effect of zink sulphate application and the cyclic incorporation of cereal straw on yields, the tissue concentration and uptake of Zn by crops and availability of Zn in soil under rice-wheat rotation. International Journal of Recycling of Organic Waste in Agriculture. 3(53): 1-12.
Emami, A. (1996). Methods of plant analysis. Vol 982. Soil and Water Research Institute. 130 p.
Fang, Y., Wang, L., Xin, Z., Zhao, L., An, X. and Hu, Q. (2008). Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in china. Journal of Agricultural and Food Chemistry. 56: 2079-2084.
Farnia, A. and Omidi, M.M. )2015(. Effect of nano-zink chelate and nano-biofertilizer on yield and yield components of maize (Zea Mays L.) under water stress condition. Indian Journal of Natural Sciences. 5(29): 4614-4624.
Fitzgerald, M.A., McCouch, S.R. and Hall, R.D. (2009). Not just a grain of rice: The quest for quality. Trends in Plant Science. 14(3): 133-139.
Gerami, M., Fallah, A. and Khatami moghadam, MR. (2012). Study of potassium and sodium silicate on the morphological and chlorophyll content on the rice plant in pot experiment (Oryza sativa L.). International Journal of Agriculture and Crop Sciences. 4(10): 658-661.
Haghighi, M., Afifipour, Z. and Mozafarian, M. (2012). The effect of N-Si on tomato seed germination under salinity levels. Journal of Biodiversity and Environmental Sciences. 6: 87-90.
Ishimaru, Y., Bashir, K. and Nishizawa, N.K. (2011). Zn uptake and translocation in rice plants. Rice 4(1): 21-27.
Kabeya, M.J. and Shankar, A.G. )2013(. Effect of different levels of zinc on growth and uptake ability in rice zinc contrast lines (Oryza sativa L.). Asian Journal of Plant Science and Research. 3(3): 112-116.
Liang, Y.C., Chen, Q., Liu, Q., Zhang, W.H. and Ding, R.X. (2003). Exogenous silicon Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology. 160: 1157-1164.
Lopez, CVG., Garcia, M.D.C.C., Fernandez, F.G.A., Bustos, C.S., Chisti, Y. and Sevilla, J.M.F. (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology. 101: 7587-7591.
Marschner, H. (1995). Mineral nutrition of higher plants. 2nd edition. Academic Press, London, 889p.
Mazaherinia, S., Astaraei, A.R., Fotovat, A. and Monshi, A. (2010). Effect of nano iron oxide particles on Fe, Mn, Zn and Cu concentrations in wheat plant. Journal of World Applied Sciences. 7(1): 156-162.
Mazlomi, M., Pirzad, A. and Zardoshti, M. (2012). Allocation ratio of photosynthate to different parts of sugar beet plant affected by nano-iron foliar application at varying growth stages. International Journal of Plant, Animal and Environmental Sciences. 2: 121-128.
Meena, V.D., Dotaniya, M.L., Coumar, V., Rajendiran, S., Ajay, Kundu, S. and Rao, A.S. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 84(3): 505-518.
Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H.R. and Aghdasi, M. (2015). Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes. Theoretical and Experimental Plant Physiology. 27(1): 19-29.
Monica, R.C. and Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia. 62: 161-165.
Nakata, Y., Ueno, M., Kihara, J., Ichii, M., Taketa, S. and Arase, S. (2008). Rice blast disease and susceptibility to pests in a silicon uptake deficient mutant. Crop Protection. 27(3-5): 865-868.
Phattarakul, N., Rerkasem, B., Li, L.J., Wu, L.H., Zou, C.Q., Ram, H., Sohu, V.S., Kang, B.S., Surek, H., Kalayci, M., Yazici, A., Zhang, F.S. and Cakmak, L. (2012). Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil. 361(1-2): 131-141.
Ranganathan, S., Suvarchala, V., Rajesh, Y.B.R.D., Prasad, M.S., Padmakumari, A.P. and Voleti, S.R. (2006). Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum. 50(4): 713-716.
Rehman, H., Aziz, T., Farooq, M., Wakeel, A. and Rengel, Z. (2012). Zinc nutrition in rice production systems: a review. Plant and Soil. 361: 203-226.
Sarto, M.V.M., Lana, M.D.C., Rampim, L., Rosset, J.S., Wobeto, J.R., Ecco, M., Bassegio, D. and Costa, P.F.D. (2014). Effect of silicate on nutrition and yield of wheat. African Journal of Agricultural Research. 9(11): 956-962.
Shivay, YS., Kumar, D., Prasad, R. and Ahlawat, LPS. (2008). Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coating onto urea. Nutrient Cycling in Agroecosystems. 80(2): 181-188.
Shivay, Y.S., Prasad, R., Kaur, R. and Pal, M. (2016). Relative efficiency of zinc sulphate and chelated zinc on zinc biofortification of rice grains and zinc use-efficiency in Basmati rice. Proceedings of the National Academy of Sciences, India Section B, Biological Sciences. 86(4): 973-984.
Singh, K., Singh, R., Singh, JP., Singh, Y. and Singh, KK. (2006). Effect of level and time of silicon application on growth, yield and its uptake by rice (Oryza sativa). Indian Journal of Agricultural Science. 76(7): 410-413.
Sperotto, R.A. (2013). Zn/Fe remobilization from vegetative tissues to rice seeds: should I stay or should I go: Ask Zn/Fe supply. Frontiers in Plant Science. 4: 464-467.
Toyogon, D.S.J., Impa, S.M., Castillo, O.B., Larazo, W. and Johnson-Beebout, S.E. (2016). Enriching rice grain zinc through zinc fertilization and water management. Soil Science Society of America Journal. 80(1): 121-134.
Wang, Y.Y., Wei, Y.Y., Dong, L.X., Lu, L.L., Feng, Y., Zhang, J., Pan, F.S. and Yang, X.E. (2014). Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. Journal of Zhejiang University-Science. B (Biomedicine & Biotechnology). 15(4): 365-374.
Wang, S., Wang, F. and Gao, S. (2015). Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research. 22(4): 2837-2845.
Wu, C., Lu, L.L., Yang, X.E., Feng, Y.Y., Wei, Y.Y., Hao, H.L.L., Stoffella, P.J. and He, Z.L. (2010). Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. Journal of Agricultural and Food Chemistry. 58: 6767-6773.
Yazdpour, H., Noormohamadi, Gh., Madani, H., Heidari Sharif Abad, H., Mobasser, H.R. and Oshri, M. (2014). Role of nano-silicon and other silicon resources on straw and grain protein, phosphorus and silicon contents in Iranian rice cultivar (Oryza sativa cv. Tarom). International Journal of Biosciences. 5(12): 449-456.
Yoshida, S. (1975). The physiology of silicon in rice. Food and Fertilizer Technology Center (FFTC), Technical Bulletin. 25: 1-27.
_||_
Afshar, I., Rahimi Haghighi, A. and Shirazi, M. )2014(. Comparison the effects of spraying different amounts of nano zink oxide and zink oxide on wheat. Environmental Sciences. 4(3): 688-693.
Agricultural Statistics. (2016). Ministry of Agriculture Jihad, Deputy of Planning and Economics, ICT. Tehran. Iran. Vol 1: Agronomic Crops. 163p.
Alharby, H.F., Metwali, E.M.R., Fuller, M.P. and Aldhebiani, A. (2016). Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum L.) under salt stress. Archives of Biological Sciences. 68(4): 723-735.
Bazilevich, N.I. (1993). The biological productivity of north Eurasian ecosystems. RAS Institute of Geography, Nayka, Moscow.
Chang, HB., Win, L. and Huang, HJ. (2005). Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regulation. 46(3): 261-266.
Chinnamuthu, C.R. and Boopathi, M. (2009). Nanotechnology and agroecosystem. Madras Agricultural Journal. 96: 17-31.
Choi, S., Jun, H., Bang, J., Chung, S.H., Kim, Y., Kim, B.S., Kim, H., Beuchat, L.R. and Ryu, J.H. (2015). Behavior of Aspergillus flavus and Fusarium graminearum on rice as affected by degree of milling, temperature, and relative humidity during storage. Food Microbiology.46: 307-313.
Dwivedi, R. and Srivastva, P.C. (2014). Effect of zink sulphate application and the cyclic incorporation of cereal straw on yields, the tissue concentration and uptake of Zn by crops and availability of Zn in soil under rice-wheat rotation. International Journal of Recycling of Organic Waste in Agriculture. 3(53): 1-12.
Emami, A. (1996). Methods of plant analysis. Vol 982. Soil and Water Research Institute. 130 p.
Fang, Y., Wang, L., Xin, Z., Zhao, L., An, X. and Hu, Q. (2008). Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in china. Journal of Agricultural and Food Chemistry. 56: 2079-2084.
Farnia, A. and Omidi, M.M. )2015(. Effect of nano-zink chelate and nano-biofertilizer on yield and yield components of maize (Zea Mays L.) under water stress condition. Indian Journal of Natural Sciences. 5(29): 4614-4624.
Fitzgerald, M.A., McCouch, S.R. and Hall, R.D. (2009). Not just a grain of rice: The quest for quality. Trends in Plant Science. 14(3): 133-139.
Gerami, M., Fallah, A. and Khatami moghadam, MR. (2012). Study of potassium and sodium silicate on the morphological and chlorophyll content on the rice plant in pot experiment (Oryza sativa L.). International Journal of Agriculture and Crop Sciences. 4(10): 658-661.
Haghighi, M., Afifipour, Z. and Mozafarian, M. (2012). The effect of N-Si on tomato seed germination under salinity levels. Journal of Biodiversity and Environmental Sciences. 6: 87-90.
Ishimaru, Y., Bashir, K. and Nishizawa, N.K. (2011). Zn uptake and translocation in rice plants. Rice 4(1): 21-27.
Kabeya, M.J. and Shankar, A.G. )2013(. Effect of different levels of zinc on growth and uptake ability in rice zinc contrast lines (Oryza sativa L.). Asian Journal of Plant Science and Research. 3(3): 112-116.
Liang, Y.C., Chen, Q., Liu, Q., Zhang, W.H. and Ding, R.X. (2003). Exogenous silicon Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology. 160: 1157-1164.
Lopez, CVG., Garcia, M.D.C.C., Fernandez, F.G.A., Bustos, C.S., Chisti, Y. and Sevilla, J.M.F. (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology. 101: 7587-7591.
Marschner, H. (1995). Mineral nutrition of higher plants. 2nd edition. Academic Press, London, 889p.
Mazaherinia, S., Astaraei, A.R., Fotovat, A. and Monshi, A. (2010). Effect of nano iron oxide particles on Fe, Mn, Zn and Cu concentrations in wheat plant. Journal of World Applied Sciences. 7(1): 156-162.
Mazlomi, M., Pirzad, A. and Zardoshti, M. (2012). Allocation ratio of photosynthate to different parts of sugar beet plant affected by nano-iron foliar application at varying growth stages. International Journal of Plant, Animal and Environmental Sciences. 2: 121-128.
Meena, V.D., Dotaniya, M.L., Coumar, V., Rajendiran, S., Ajay, Kundu, S. and Rao, A.S. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 84(3): 505-518.
Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H.R. and Aghdasi, M. (2015). Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes. Theoretical and Experimental Plant Physiology. 27(1): 19-29.
Monica, R.C. and Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia. 62: 161-165.
Nakata, Y., Ueno, M., Kihara, J., Ichii, M., Taketa, S. and Arase, S. (2008). Rice blast disease and susceptibility to pests in a silicon uptake deficient mutant. Crop Protection. 27(3-5): 865-868.
Phattarakul, N., Rerkasem, B., Li, L.J., Wu, L.H., Zou, C.Q., Ram, H., Sohu, V.S., Kang, B.S., Surek, H., Kalayci, M., Yazici, A., Zhang, F.S. and Cakmak, L. (2012). Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil. 361(1-2): 131-141.
Ranganathan, S., Suvarchala, V., Rajesh, Y.B.R.D., Prasad, M.S., Padmakumari, A.P. and Voleti, S.R. (2006). Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum. 50(4): 713-716.
Rehman, H., Aziz, T., Farooq, M., Wakeel, A. and Rengel, Z. (2012). Zinc nutrition in rice production systems: a review. Plant and Soil. 361: 203-226.
Sarto, M.V.M., Lana, M.D.C., Rampim, L., Rosset, J.S., Wobeto, J.R., Ecco, M., Bassegio, D. and Costa, P.F.D. (2014). Effect of silicate on nutrition and yield of wheat. African Journal of Agricultural Research. 9(11): 956-962.
Shivay, YS., Kumar, D., Prasad, R. and Ahlawat, LPS. (2008). Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coating onto urea. Nutrient Cycling in Agroecosystems. 80(2): 181-188.
Shivay, Y.S., Prasad, R., Kaur, R. and Pal, M. (2016). Relative efficiency of zinc sulphate and chelated zinc on zinc biofortification of rice grains and zinc use-efficiency in Basmati rice. Proceedings of the National Academy of Sciences, India Section B, Biological Sciences. 86(4): 973-984.
Singh, K., Singh, R., Singh, JP., Singh, Y. and Singh, KK. (2006). Effect of level and time of silicon application on growth, yield and its uptake by rice (Oryza sativa). Indian Journal of Agricultural Science. 76(7): 410-413.
Sperotto, R.A. (2013). Zn/Fe remobilization from vegetative tissues to rice seeds: should I stay or should I go: Ask Zn/Fe supply. Frontiers in Plant Science. 4: 464-467.
Toyogon, D.S.J., Impa, S.M., Castillo, O.B., Larazo, W. and Johnson-Beebout, S.E. (2016). Enriching rice grain zinc through zinc fertilization and water management. Soil Science Society of America Journal. 80(1): 121-134.
Wang, Y.Y., Wei, Y.Y., Dong, L.X., Lu, L.L., Feng, Y., Zhang, J., Pan, F.S. and Yang, X.E. (2014). Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. Journal of Zhejiang University-Science. B (Biomedicine & Biotechnology). 15(4): 365-374.
Wang, S., Wang, F. and Gao, S. (2015). Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research. 22(4): 2837-2845.
Wu, C., Lu, L.L., Yang, X.E., Feng, Y.Y., Wei, Y.Y., Hao, H.L.L., Stoffella, P.J. and He, Z.L. (2010). Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. Journal of Agricultural and Food Chemistry. 58: 6767-6773.
Yazdpour, H., Noormohamadi, Gh., Madani, H., Heidari Sharif Abad, H., Mobasser, H.R. and Oshri, M. (2014). Role of nano-silicon and other silicon resources on straw and grain protein, phosphorus and silicon contents in Iranian rice cultivar (Oryza sativa cv. Tarom). International Journal of Biosciences. 5(12): 449-456.
Yoshida, S. (1975). The physiology of silicon in rice. Food and Fertilizer Technology Center (FFTC), Technical Bulletin. 25: 1-27.