Physiological response of sesame (Sesamum indicum L.) to application of chitosan and magnesium-nano fertilizers under irrigation cut-off in a sustainable agriculture system
Subject Areas : Stress PhysiologyJaber Khordadi Varamin 1 , Farzad Fanoodi 2 , Jafar Masuod Sinaki 3 , Shahram Rezvan 4 , Ali Damavandi 5
1 - Faculty of Agriculture, Agronomy Department, Islamic Azad University, Damghan Branch, Damghan, Iran
2 - Agriculture department, damghan branch, islamic azad university, damghan, iran
3 - Faculty of Agriculture, Agronomy Department, Islamic Azad University, Damghan Branch, Damghan, Iran
4 - Faculty of Agriculture, Agronomy Department, Islamic Azad University, Damghan Branch, Damghan, Iran
5 - Faculty of Agriculture, Agronomy Department, Islamic Azad University, Damghan Branch, Damghan, Iran
Keywords: Drought stress, osmotic adjustment, Photosynthetic pigments, BBCH scale, nutrient function,
Abstract :
In order to investigate chitosan and magnesium-nano fertilizers’ impact on photosynthetic pigments, protein, proline, and soluble sugar contents of sesame under irrigation cut-off treatment, a split-factorial experiment was conducted based on randomized blocks with three replications. Irrigation cut-off based on BBCH scale as the main factor (normal irrigation and irrigation cut-off in 6 and 75 BBCH stages). Secondary factors as subplot included Oltan and Dashtestan-2 sesame cultivars, and foliar application of Mg-nano fertilizer (application and non-application) and chitosan (control, foliar application of 4.8 g.l-1 in 65 BBCH and 6.4 g.l-1 in 75 BBCH stages). Based on the results, severe drought stress (irrigation up to 65 BBCH) resulted in reducing the mean of chlorophyll a, b, and total compared to the control treatment. Chitosan foliar application yielded more desirable results compared to those of Mg-nano fertilizer and caused an increase in the mean traits of chlorophyll a, b, total, carotenoid, protein, proline, and soluble sugar. In addition, irrigation up to 65 BBCH (severe drought stress) and non-application of nanofertilizer led to a decrease in chlorophyll content and physiological damage. Based on the findings, chitosan biopolymer, as a natural substance, as well as co-application of these two can be an appropriate action in order to decrease the plant damage under drought stress regarding the role of Mg in chlorophyll structure and a large number of the plant vital enzymes.
Arnon. D. I. 1949. 'Copper enzymes in isolated chloroplast polyphenoloxidase in Beta Vulgaris'. Plant Physiology, 24 (1): 1-15.
Bates, L. S., R. P. Waldern and O. D. Teare. 1973. 'Rapid determination of free proline for water stress studies'. Plants and Soil, 39(1): 205-207.
Boonlertnirun. S., R. Suvannasara and K, Boonlertnirun. 2014. 'Effects of chitosan application before being subjected to drought on physiological changes and yield potential of rice (Oryza sativa L.)'. Journal of Applied Sciences Research, 9(12): 6140-6145.
Bradford. M. M. 1976. 'A rapid and sensitive method for the quantitation of microgram quantities in utilizing the principle of protein-dye binding'. Analytical Biochemistry, 72(1-2): 248-254
Cakmak. I and A. M. Yazici. 2010. 'Magnesium forgotten element in crop production'. Better Crop, 94(2):23-25.
Ebrahimzadeh. M. A and F. Bahramian. 2009. 'Antioxidant activity of Crataegus pentagina subsp. elbursis fruits extract used in traditional medicine in Iran'. Pakistan Journal of Biological Sciences, 12(5): 413-419.
Efeoglu. B., Y. Ekmeki and N. Cicek. 2009. 'Physiological responses of three maize cultivars to drought stress and recovery'. South Africa Journal Botany, 75(1): 34-42.
EL-Metwally. A. E., F. E. Abdalla., A. M. EL-Saady., S. A. Safina and S. S. EL-Sawy. 2010.'Response of wheat to magnesium and copper foliar feeding under sandy soil condition'. Journal of American Science, 6(12): 818-823.
Farouk. S. and A. R. Amany. 2012. 'Improving growth and yield of cowpea by foliar application of chitosan under water stress'. Egyptian Journal of Biology, 14:14-26.
Girija. C., B. N. Smith and P. M. Swamy. 2002. 'Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycine betaine in peanut (Arachis hypogaea L.)'. Environ experimental, 43: 1-10.
Gornik. K., M. Grzeisk and B. R. Duda. 2008. 'The effect of chitosan on rooting of gravevine cuttings and on subsequent plant growth under drought and temperature stress'. Fruit Ornamental Plant Research, 16: 333-343.
Hadwiger.L.A.2013. 'Multiple effects of chitosan on plant systems: solid science or hype'. Plant Science, 208: 42-49.
Howladav. S. M., A. S. Osman., M. M. Raddy and H. S. Al-Zahrani. 2014. 'Magnesium foliar application and phosphorien soil inoculation positively affect (Pisum sativum L.) plants grown on sandy calcareous soil'. World Academy of science, engineering and technology international journal of biological, bio molecular, agricultural, food and biotechnological engineering, 8(5): 436-440.
Hsiao. T. C. 1973. 'Plant responses to water stress'. Annual Review of Plant Physiology, 24: 519-570.
Irrigoyen. J. H., D. W. Emerich and M. sanchez Diaz. 1992. 'Water stress induced changes in concentration of proline and total soluble sugars in modulated alfalfa (Medicago sativa) plants'. Physiologia Plantarum, 84(1): 55-66
Jabasingh. C and S. Saravana Babu. 2014. 'Impact of water stress on protein content of (Zea mays L.)'. Academia and Industrial Research, 2(12): 679-782.
Johari-Pireivatlou. M. 2010. 'Effect of soil water stress on yield and proline content of four Wheat lines'. African Journal of Biotechnology, 9(1): 36-40.
Kumar. R., A. K. Sarawgi., C. Ramos., S. T. Amarante., A. M. Ismaeil and L. J. Wade. 2006. 'Partitioning of dry matter during drought stress in rainfed low land rice'. Field Crop Research, 98(1): 1-11.
Kumar. R., K. Krishna and G. R. Naik. 2011. 'Effect of Polyethylene-glycol- induced water stress on physiological and biochemical responses in pigeon pea'. Recent Research in Science and Technology, 3(1): 148-152.
Lesko. K., E. S. Banyai and L. S. Sarkadi. 2002. 'Effect of magnesium on free amino acid and polyamine content in wheat seedling exposed to cadmium stress'. Acta Biologica Szegediensis, 46(34): 109-111.
Liang. X., L. Zhang., S. K. Natarajan and D. F. Becker. 2013. 'Proline mechanisms of stress survival'. Antioxidants and Redox Signaling, 19(9): 998-1011.
Limpanavech. P., S. Chaiyasuta., R. Vongpromek., R. Pityangkura., C. Khunwasi., S. Chadchanwan., P. Lotrakul., R. Bunjograt., A. Chaidee and T Bangyeekhum. 2008. 'Effect of chitosan on floral production, gene expression and anatomical changes in the Dendrobium orchid'. Science Horticulture, 116(1): 65-72.
Lotfi. R., M. Pessarakli., P. Gharavi-Kouchebagh and H. Khoshvaghti. 2015. 'Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity'. The Crop Journal, 3(5): 434-439
Lutts. S., J. Kinet and J. Bouharmont. 1996. 'Effect of various salts and mannitol on ion and proline accumulation in relation to osmotic adjustment in Rice callus cultures'. Plant Physiology, 149(1-2): 186-195.
Mafakheri. A., A. Siosemardeh., B. Bahramnejad., P. C. Struik and Y. Sohrabi. 2010. 'Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars'. Australian Journal of Crop, 4(8): 580-585.
Mahdavi. B., S. A. M. Modarres Sanavy., M. Aghaalikhani., M. Sharifi and A. Dolatabadian. 2011. 'Chitosan improves osmotic potential tolerance in Safflower seedlings'. Crop Improvement, 25(6): 728-741.
Manivannan. P., C. A. Abdul Jaleel., B. Sankar., A. Kishorekumar., R. Somasundaram., G. M. Lakshmanan and R Panneerselvam. 2007. 'Growth, biochemical modifications and proline metabolism in (Helianthus annus L.) as induced by drought stress'. Colloids and Surfaces B: Biointerfaces, 59(2): 141-149.
Monakhova. O. F. and L. I. Chernyader. 2002. 'Protective role of Kartolin-4 in wheat plants exposed to soil drought'. Applied Biochemistry Microbiology, 38(4): 373-380.
Moore, P.B. and T.A. Steitz. 2011. 'The roles of RNA in the synthesis of protein'. Cold Spring Harb Prospect Biology, 3(11): 1-17.
Mostajeran. A. and V. Rahimi-Eichi. 2009. 'Effects of drought stress on growth and yield of rice cultivars and accumulation of proline and soluble sugars in sheath and blades of their different ages leaves'. American-Eurasian Journal of Agricultural and Environmental Science, 5(2): 264-272.
Movludi. A., A. Ebadi., S. Jahanbakhsh., M. Davari and G. Parmoon. 2014. 'The effect of water deficit and nitrogen on the antioxidant enzymes activity and Quantum yield of Barley (Hordeum vulgare L.)'. Notulae Botanicae Horti Agrobotanici, 42(2): 398-404.
Parvaiz. A. and S. Satyawati. 2008. 'Salt stress and phyto-biochemical of plants- a review'. Plant Soil and Environment, 54(3): 89-99.
Polle. A., T. Otter and B. Mehne-Jakobs. 1994. 'Effect of magnesium-deficiency on antioxidative systems in needles of Norway spruce (Picea abies L. Karst) grown with different ration of nitrate and ammonium as nitrogen sources'. The New Phytologist, 128(4):621-628
Pongprayoon. W., S. Roytrakul., R. Pichyangkura and S. Chadchawan. 2013. 'The role of hydrogen peroxide in chitosan induced resistance to osmotic stress in rice (Oryza sativa L.)'. Plant Growth Regulation', 70(2): 159-173.
Roul. B., B. K. Mishra and N. Prusty. 2017. 'Natural effect of micronutrient on growth and growth parameter of sesame oilseed crop'. Pharmacognosy and Phytochemistry, 6(5): 1926 1928.
Roy-Macauley. H., Y. Zuily-Fodil., M. Kidric., A. T. Pham Thi and J. Vieira de Silva. 1992. 'Effect of drought stress on proteolytic activities in Phaseolus and Vigna leaves from sensitive and resistant plants'. Physiologica Plantarum, 85(1):90-96
Saad. A. O. M. and M. A. EL-Kholy. 2000. 'Response of some Faba bean to phosphorus and magnesium fertilization'. Egyptian Journal of Agronomy, 1:19-32.
Saif Eldeen. U. M., M. M. B. Shokr and R. S. EL Shotoury. 2014. 'Effects of foliar spry with seaweeds extract and chitosan on earliness and productivity of globe artichoke'. Plant Production, 5(7): 1197-1207.
Sakata. Y., K. Komatsu and D. Takezawa. 2014. 'ABA as a universal plant hormone'. Progress in Botany, 75: 57-96.
Sharifa. S. and Abu-Muriefah. 2013. 'Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions'. Agricultural Science and Soil Science, 3(6): 192-199.
Slama. I., T. Ghnaya., K. Hessini., D. Messedi., A. Savoure and C. Abdelly. 2007. 'Comparative study of the effects of mannitol and PEG osmatic stress on growth and solute accumulation in Sesuvium portulacastrum'. Environmental and Experimental Botany, 61: 10-17.
Sultana. S., M. Islam., M. A. Khatun., M. A. Hassain and R. Huque. 2017. 'Effect of foliar application of oligo-chitosan on growth, yield and quality of tomato and eggplant'. Asian Journal of Agriculture Research, 11(2): 36-42.
Taha. R. S. 2016. 'Magnesium and phosphorien application improve the efficiency of growth and productivity of squash (Cucurbita pepo L.) plant grown on a sandy calcareous soil'. Advanced Botany and Zoology, 4(1): 26-43
Valentovic. P., M. Luxova., L. Kolarovic and O. Gasparikola. 2006. 'Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars'. Plant Soil Environment, 52(4): 186-191.
Verbruggen. N. and C. Hermans. 2008. 'Proline accumulation in plants: a review'. Amino Acids, 35(4): 753-759.
Wang. F., P. Liu and J. Zhu. 2004. 'Effect of magnesium (Mg) on contents of free proline, soluble sugar and protein in soybean leaves'. Henan Agricultural Sciences, 6: 35-38.
Wilkinsan. S. R., R. M. Welch., H. F. Mayland and D. L. Grunes. 1991. 'Magnesium in plants: Uptake, Distribution, function, and utilization by man and Animals'. Biology System, 26: 33-56.
Yang. G. H., L. T. Yang and H. X. Jiang. 2012. 'Physiological impacts of magnesium-deficiency in citrus seedlings: photosynthesis, antioxidant system and carbohydrates'. Trees-structure and Function, 26(4): 1237-1250.