Cubic NiO Nanoparticles: Synthesis and Characterization
Subject Areas : International Journal of Bio-Inorganic Hybrid NanomaterialsA.A. Dehno Khalaji 1 * , D. Das 2 , J.S. Matalobos 3 , F. Gharib 4
1 - Department of Chemistry, Faculty of Science, Golestan University, Gorgan+Iran & Cubane Chemistry of Hircane Co (CCH), Gorgan, Iran
2 - Department of Chemistry, The University of Burdwan, Burdwan, West
Bangal, India
3 - Departamento de QuimicaInorganica, Facultade de Quimica,
Avda. Das Ciencias s/n, 15782, Santiago de Compostela, Spain
4 - Department of Chemistry, Faculty of Science, Golestan University,
Gorgan, Iran
Keywords: Thermal decomposition, Schiff Base, NiO Nanoparticles, Nickel(II) macrocyclic, Characterized,
Abstract :
In this paper, cubic nickel oxide nanoparticles were successfully prepared by solid-state thermal decomposition of nickel(II) macrocyclic Schiff-base complex at 450°C for 3 h without employing toxic solvent or surfactant and complicated equipment. nickel(II) macrocyclic Schiff-base complex was synthesized by the reaction of 1,2-bis(2-formyl-3-methoxyphenyl)propane, NiCl2•6H2O and 1,3-phenylenediamine in methanol at room temperature and characterized by elemental analyses and FT-IR spectroscopy. The as prepared NiO nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD pattern result shows that the synthesized NiO nanoparticles are pure and single phase. The SEM and TEM results show the morphology of the as prepared NiO nanoparticles is almost cubic shape with the average size between 20-150 nm. On the basis of the above results, other transition metal macrocyclic Schiff base complexes are therefore potentially capable of forming metal oxide nanoparticles.
[1] Kumar D.S. and Alexander V., Polyhedron, 18 (1999) 1561-1568.
[2] Tamburini S., Vigato V., Gatos M., Bertolo L. and Casellato U., Inorg. Chim. Acta, 359 (2006) 183-196.
[3] Borisova N.E., Reshetova M.D. and Ustynyuk Y.A., Chem. Rev., 107 (2007) 46-79.
[4] Ilhan S., Temel H., Kilic A. and Tas E., Trans. Met. Chem., 32 (2007) 1012-1017.
[5] Yilmaz I., Ilhan S., Temel H. and Kilic A., J. Incl. Phenom. Macrocycl. Chem., 63 (2009) 163-169.
[6] Ilhan S. and Temel H., Ind. J. Chem. A., 47 (2008) 378-382.
[7] Ilhan S. and Temel H., Trans. Met. Chem., 32 (2007) 1039-1046.
[8] Khandar A.A., Hosseini-Yazdi S.A., Khatamian M. and Zarei S.A., Polyhedron, 29 (2010) 995-1000.
[9] Salavati-Niasari M. and Amiri A., Trans. Met. Chem., 31 (2006) 157-162.
[10] Al-Radadi N.S., Al-Ashgar S.M. and Mostafa M.M., J. Incl. Phenom. Macrocycl. Chem., 69 (2011) 157-165.
[11] Kim S.I., Lee J.S., Ahn H.J., Song H.K. and Jang J.H., ACS App. Mater. Interfaces, 5 (2013) 1596-1603.
[12] Vijayakumar S., Nagamuthu S. and Muralidharan G., ACS App. Mater. Interfaces, 5 (2013) 2188-2196.
[13] Wu C.H., Deng S.X., Wang H., Sun Y.X., Liu J.B. and Yan H., ACS App. Mater. Interfaces, 6 (2014) 1106-1112.
[14] Pan J.H., Huang Q., Koh Z.Y., Neo D., Wang X.Z. and Wang Q., ACS App. Mater. Interfaces, 5 (2013) 6292-6299.
[15] Choi S.H. and Kang Y.C., ACS App. Mater. Interfaces, 6 (2014) 2312-2316.
[16] Rakshit S., Chall S., Mati S.S., Roychowdhury A., Moulik S.P. and Bhattacharya S.C., RSC Advances, 3 (2013) 6106-6116.
[17] Dalavi D.S., Devan R.S., Patil R.S., Ma Y.R., Kang M.G., Kim J.H. and Patil P.S., J. Mater. Chem. A., 1 (2013) 1035-1039.
[18] Farzaneh F. and Haghshenas Kashanie S., J. Cer. Process. Res., 14 (2013) 673-676.
[19] Kalam A., Al-Shihri A.S., Shakir M., El-Bindary A.A., Yousef E.S.S. and Du G., Synth. React. Inorg. Met. Org. Chem., 41 (2011) 1324-1330.
[20] Mehdizadeh R., Sanati S. and Saghatforoush L.A., Synth. React. Inorg. Met. Org. Chem., 43 (2013) 466-470.
[21] Khalaji A.D., J. Clust. Sci., 24 (2013) 189-195.
[22] Khalaji A.D., J. Clust. Sci. 24 (2013) 209-215.
[23] Farhadi S. and Roostaei-Zaniyani Z., Polyhedron, 30 (2011) 1244-1249.
[24] Farhadi S. and Roostaei-Zaniyani Z., Polyhedron, 30 (2011) 971-975.
[25] Sun W., Chen L., Meng S., Wang Y., Li H., Han Y. and Wei N., Mat. Sci. Semicon. Proc., 17 (2014), 129.
[26] Xia Q.X., Hui K.S., Hui K.N., Hwang D.H., Lee S.K., Zhou W., Cho Y.R., Kwon S.H., Wang Q.M. and Son Y.G., Mater. Lett., 69 (2012), 69.