Effects of Thyme Essential Oil and Disodium Fumarate on Ruminal Fermentation Characteristics, Microbial Population and Nutrient Flow in a Dual Flow Continuous Culture System
Subject Areas : Camelه. براز 1 , ح. جهانی-عزیزآبادی 2 , ع. عزیزی 3
1 - Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
Keywords: rumen fermentation, cellulolytic bacteria, Essential oil, microbial crude protein,
Abstract :
The aim of the present study was to investigate the effects of di-sodium fumarate (DSF) and thyme essential oil (TEO) solely and simultaneously on ruminal fermentation properties and microbial abundance. A dual-flow continuous culture system (DFCC) with eight 1400-mL fermenters was used in a period of 12 d that divided to 9 d for adaptation and 3 d for sampling. Fermenters were fed 100 g d-1 [dry matter (DM) basis] of a 50:50 alfalfa hay:concentrate ration. Treatments were no additive (control), 10 mM of DSF, 125 µL/L of TEO and simultaneous use of 10 mM of DSF, and 125 µL/L of TEO (SIMTF). Treatments had no effect on organic matter (OM) and neutral detergent fiber (NDF) disappearance, total and cellulolytic bacteria and protozoa abundance, large peptides and N-NH3 concentration of the effluent, N-NH3 and dietary N flow and molar proportions of acetate (C2), butyrate and isovalerate. DSF significantly increased crude protein (CP) degradation, the molar proportion of propionate (C3) and reduced C2:C3ratio (p <0.05). TEO decreased (p <0.05) DM disappearance (-14.4%) and total volatile fatty acid (-19.4%) concentration, relative to the DSF. Relative to the control, small peptide plus amino acid N concentration was higher (p <0.05) in TEO treatment and DSF. SIMTF increased (p <0.05) the acid detergent fiber (ADF) disappearance and decreased the N-NH3 concentration from zero to 4 h after feeding. Total N, non-ammonia N and bacterial N flow and efficiency of microbial CP synthesis increased with SIMTF. Findings demonstrated that feed efficiency and ruminal fermentation were improved by the simultaneous use of DSF and TEO.
AOAC. (1995). Official Methods of Analysis. 15th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Asanuma N., Iwamoto M. and Hino T. (1999). Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82, 780-787.
Baraz H., Jahani-Azizabadi H. and Azizi O. (2018). Simultaneous use of thyme essential oil and disodium fumarate can improve in vitro ruminal microbial fermentation characteristics. Vet. Res. Forum. 9, 193-198.
Caldwell D.R. anf Bryant M.P. (1966). Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl. Microbiol. 14, 794-801.
Callaway T.R. and Martin S.A. (1996). Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74, 1982-1989.
Carro M. and Ranilla M. (2003). Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro. British J. Nutr. 90, 617-623.
Castillejos L., Calsamiglia S. and Ferret A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in vitro systems. J. Dairy Sci. 89, 2649-2658.
Castillejos L., Calsamiglia S., Ferret A. and Losa R. (2007). Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 132, 186-201.
Dehority B.A. (1984). Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl. Environ. Microbiol. 48, 182-185.
Garcia-Martínez R., Ranilla M., Tejido M. and Carro M. (2005). Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage: concentrate ratio. British J. Nutr. 94, 71-77.
Jahani-Azizabadi H., Danesh Mesgaran M., Vakili A. and Rezayazdi K. (2014). Effect of some plant essential oils on in vitro ruminal methane production and on fermentation characteristics of a mid-forage diet. J. Agri. Sci. Technol. 16, 1543-1554.
Jahani-Azizabadi H., Mesgaran M.D., Vakili A.R., Rezayazdi K. and Hashemi M. (2011). Effect of various medicinal plant essential oils obtained from semi-arid climate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. African J. Microbiol. Res. 5, 4812-4819.
Lin B., Lu Y., Wang J., Liang Q. and Liu J. (2012). The effects of combined essential oils along with fumarate on rumen fermentation and methane production in vitro. J. Anim. Feed Sci. 21, 198-210.
Lin B., Wang J., Lu Y., Liang Q. and Liu J. (2013). In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr. 97, 1-9.
Lopez S., Newbold C., Bochi-Brum O., Moss A. and Wallace R. (1999a). Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro.South African J. Anim. Sci. 29, 106-107.
Lopez S., Valdes C., Newbold C. and Wallace R. (1999b). Influence of sodium fumarate addition on rumen fermentation in vitro. Bri. J. Nutr. 81, 59-64.
Makkar H., Sharma O., Dawra R. and Negi S. (1982). Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65, 2170-2173.
Mao S., Zhang G. and Zhu W. (2007). Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Asian-Australasian J. Anim. Sci. 20, 543-549.
Martin S. (1998). Manipulation of ruminal fermentation with organic acids: A review. J. Anim. Sci. 76, 3123-3132.
Martinez S., Madrid J., Hernandez F., Megias M., Sotomayor J. and Jordan M. (2006). Effect of thyme essential oils (Thymus hyemalis and Thymus zygis) and monensin on in vitro ruminal degradation and volatile fatty acid production. J. Agric. Food Chem. 54, 6598-6602.
McDougall E.I. (1948). I. Studies on ruminant saliva. 1. The composition and output of sheeps saliva. Biochem. J. 43, 99-109.
McIntosh F.M., Williams P., Losa R., Wallace R.J., Beever D.A. and Newbold C.J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol. 69, 5011-5014.
Newbold C., Lopez S., Nelson N., Ouda J., Wallace R. and Moss A. (2005). Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. British J. Nutr. 94, 27-35.
Newbold C., McIntosh F., Williams P., Losa R. and Wallace R. (2004). Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 114, 105-112.
Oblinger J. and Koburger J. (1975). Understanding and teaching the most probable number technique. J. Milk Food Technol. 38, 540-545.
Pirondini M., Colombini S., Malagutti L., Rapetti L., Galassi G., Zanchi R. and Crovetto G.M. (2015). Effects of a selection of additives on in vitro ruminal methanogenesis and in situ and in vivo NDF digestibility. Anim. Sci. J. 86, 59-68.
Remling N., Hachenberg S., Meyer U., Holtershinken M., Flachowsky G. and Danicke S. (2011). Influence of various amounts of fumaric acid on performance and parameters of the acid-base balance of growing bulls fed with grass or maize silage. Arch. Anim. Nutr. 65, 386-401.
Riede S., Boguhn J. and Breves G. (2013). Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community. Arch. Anim. Nutr. 67, 368-380.
SAS Institute. (2001). SAS®/STAT Software, Release 8.2. SAS Institute, Inc., Cary, NC. USA.
Stern M. and Hoover W. (1990). The dual flow continuous culture system. Pp. 17-32 in Proc. Contin. Culture Fermen. Frust. Fermen., NortheastADSA-ASAS Regional Meeting, Chazy, New York.
Szumacher S.M. and Cieslak A. (2010). Potential of phytofactors to mitigate rumen ammonia and methane production. J. Anim. Feed Sci. 19, 319-337.
Ultee A., Bennik M. and Moezelaar R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68, 1561-1568.
Ungerfeld E., Kohn R., Wallace R. and Newbold C. (2007). A meta-analysis of fumarate effects on methane production in ruminal batch cultures. J. Anim. Sci. 85, 2556-2563.
Van Soest P.V., Robertson J. and Lewis B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Winter K.A., Johnson R. and Dehority B. (1964). Metabolism of urea nitrogen by mixed cultures of rumen bacteria grown on cellulose. J. Anim. Sci. 97, 793-797.
Yang C., Mao S., Long L. and Zhu W. (2012). Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: Concentrate ratios. Animal. 6, 1788-1794.
Zhou Y., McSweeney C., Wang J. and Liu J. (2012). Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets. Animal. 6, 815-823.