ارائه یک پوسته تطبیقپذیر هوشمند با رویکرد بیومیمتیک جهت کاهش مصرف انرژی
محورهای موضوعی : معماریحسین مهیاری 1 , افسانه زرکش 2 , محمدجواد مهدوی نژاد 3
1 - کارشناسارشد معماری، گروه معماری، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران.
2 - استادیار، گروه معماری، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران
3 - استاد، گروه معماری، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران.
کلید واژه: مصرف انرژی, بیومیمتیک, سلول فتوولتائیک, پوستهی تطبیق پذیر,
چکیده مقاله :
این پژوهش به پوستهی خارجی ساختمان، بعنوان یکی از مهمترین بخشهای ساختمان که میتواند میزان مصرف انرژی را کنترل کند، پرداخته است. هدف از این تحقیق دستیابی به راهکارهای تأثیرگذار کاهش مصرف انرژی در ساختمان بوسیلهی پوسته تطبیقپذیر و رویکرد بیومیمتیک است. روش گردآوری اطلاعات کتابخانهای و سایتهای اینترنتی و روش پژوهش توصیفی- تحلیلی و شبیه سازی می باشد. نرم افزار راینو6 و افزونه گرس هاپر و کامپوننت انرژی پلاس برای آنالیز نور روز و میزان مصرف انرژی استفاده شده است. آزمون نتایج با توجه به سیستم لید انجام گرفته است. با بررسی تأثیر پوسته خارجی بر فضای شبیه سازی شده مشخص شد که این پوستهها بار حرارتی کل را %28 ، بار سرمایش را %56 و احتمال خیرگی نور روز را %23 کاهش دهد. با الگوبرداری رفتاری از گیاهان، بدلیل ماهیت ایستا و تطبیقپذیری با محیط پیرامون میتوان به مکانیسمی در ساختمان مانند پوستهای پاسخگو به محیط رسید.
AbstractOne of the challenges facing human beings today is the excessive consumption of fossil fuels, which has led to the depletion of non-renewable energy sources and greenhouse gas emissions, as well as global warming and climate change. This challenge has led to the search for solutions to reduce fossil fuel consumption, such as optimizing and reducing energy consumption and the use of renewable energy. One of the most important areas of energy consumption is man-made in the field of architecture. On the other hand, one of the most important parts of a building that interacts with the outside environment is its outer skin. In this study, the need to pay attention to the outer skin of the building, as one of the most important parts that can manage and control the amount of energy consumption in a building, has been addressed. Its purpose is to achieve appropriate and effective solutions to reduce energy consumption in the building by the adaptive skin. One of the sources of modeling is the study of the process of reaction of living organisms to their external conditions. In this research, general solutions to reduce building consumption in the field of outer skin as well as the convergence of challenges of a building skin and mechanisms in nature for survival are discussed. It can be said that one of the most similar living organisms to adapt behavior to the facade and skin of a building are plants. Because while they do not have much mobility, they have to manage their challenges such as receiving sunlight. By modeling plants, the challenges of using and protecting sunlight in the building can be managed. The method of collecting information and data from libraries and Internet sites and the research method is descriptive-analytical and simulation using simulation software and measuring its efficiency in controlling the entry of sunlight into the inside by climate analysis and light analysis software. By modeling the behavior of a special type of plant called Oxalis oregano and abstracting from it, a concept has been reached whose structural principles have been simulated by GrassHopper plugin in Rhino software 6. This module can be generalized on the facade and can control the amount of sunlight entering the building mass by opening and closing it. Transparent photovoltaic cells (TPV) are used in the body of the module, which in addition to providing energy for opening and closing the modules, does not impede visual vision. Examining the effect of the outer skin on the simulated space, it was found that these skins reduce the total heat load by 28%, reduce cooling load by 56% and the probability of glare from daylight by 23%. By modeling plants due to their static nature and adaptability to their surroundings, a mechanism in the building such as responsive skin can be achieved that control the impact of environmental variables such as sunlight into the building and thus provide visual comfort to residents in the glare of daylight reduced the use of building cooling energy.
1. ابراهیمی, آرام, توکلی, مرتضی, افتخاری, عبدالرضا رکن الدین. (1398). تحلیل فضایی زیرساخت های سبز با استفاده از اصول آمایش سرزمین (مطالعه موردی: منطقه 22 تهران). جغرافیای اجتماعی شهری, 6(2), 235-253.
2. احمدی، محمود. (1390). تحلیل آسایش انسان از نظر عوامل اقلیمی در استان تهران. جغرافیا، 9(29)، 61-81.
3. اربابیان، همایون. (1380). بهینهسازی مصرف انرژی در ساختمان. سومین همایش ملی انرژی. اردیبهشت 11. تهران: کمیته ملی انرژی جمهوری اسلامی ایران، معاونت برق و انرژی وزارت نیرو.
4. امور نظام فنی و اجرایی سازمان برنامه و بودجه کشور. (1395). دستورالعمل طراحی سازه ای و الزامات و ضوابط عملکردی و اجرایی نمای خارجی ساختمانها (ضابطه شماره 714). تهران: وزارت راه و شهرسازی، مرکز تحقیقات راه، مسکن و شهرسازی.
5. امیر هدایی، الناز. (1392). مروری بر مفهوم و عملکرد نمای هوشمند. معماری و فرهنگ، 14(51)، 32-36.
6. پرهیزگار، ترنم؛ جعفریان، هامون؛ کیالاشکی، یاسر؛ و سبوحی، یدالله. (1391). طراحی بهینه سایبان خورشیدی متحرک بههمراه تولید برق و اثر آن روی جریان انرژی یک اتاق اداری مشخص. انرژی ایران، 15(1)، 81-96.
7. ترابی، فاطمه. (1390). رابطه متقابل پوستههای هوشمند و کاهش انرژی در ساختمان. همایشملی عمران. معماری، شهرسازی و مدیریت انرژی. بهمن 12. اردستان: دانشگاه آزاد اسلامی واحد اردستان.
8. ثروت جو، حمید؛ و ارمغان، مهتاب. (1390). نمای دو پوسته، هوشمندی و پایداری، مدیریت انرژی. همایشملی عمران. معماری، شهرسازی و مدیریت انرژی. بهمن 12. اردستان: دانشگاه آزاد اسلامی واحد اردستان.
9. حسینی، سید زینالعابدین؛ صالحی، اسماعیل؛ و ایرانیبهبهانی، هما. (1400). سنجش شاخصهای برگزیده در روند توسعهشهری در منطقه 22
شهر تهران. برنامهریزی توسعه شهری و منطقهای، 6(16)، 109-150.
10. خردمند، صبا؛ و ستاری ساربانقلی، حسن. (1397). معماری از طبیعت پیروی میکند. جغرافیایی سرزمین، 15(57)، 69- 87.
11. رزازی، سمیرا؛ و مظفری، فاطمه. (بهمن 1396). پوستههای سازگار و انطباقپذیر ساختمان با الگوپذیری از گیاهان در طبیعت. معماری سبز، 3(11)، 67-87.
12 رستم زاد، سحر؛ فیضی، محسن؛ صنایعیان، هانیه؛ و خاکزند، مهدی. (1400). طراحی پارامتریک نمای متحرک با هدف ارتقاء بهرهوری روشنایی و آسایش بصری بررسی موردی: ساختمانهای اداری تهران. نامه معماری و شهرسازی, 13(31), 85-100.
13. زینالی، بتول؛ و اصغری سراسکانرود، صیاد. (1394). مطالعه تاثیرات اقلیمی توسعه شهری در شهرستان تهران. علوم جغرافیایی، 11(22)، 69-58.
14. ژراردن، لوسین (1379). بیونیک: تکنولوژی از جانداران الهام میگیرد (ویرایش 3). (محمد بهزاد و پرویز قوامی، مترجمان). تهران: سروش.
15. علیدادی پور، آذر؛ و خوشکلام خسروشاهی، موسی. (1400). بهبود کارایی مصرف برق خانگی و اثر بازگشتی آن در ایان با لحاظ عدم تقارن در قیمت برق. فصلنامه علمی مدلسازی اقتصادی، 15(54), 47-66.
16. فخرالساعه، فاطمه؛ طاهباز، منصوره؛ دیواندری، جواد؛ و صنایعیان، هانیه. (1400). تاثیر آب و گیاه در عملکرد اقلیمی نورگیرهای داخلی ساختمان بررسی موردی: ساختمان مسکونی واقع در شهر تهران. نامه معماری و شهرسازی، 14(33)، 109-126.
17. مرکز ملی خشکسالی و مدیریت بحران. (1399). سالنامه مرکز ملی اقلیم و مدیریت بحران خشکسالی. تهران، وزارت راه و شهرسازی، سازمان هواشناسی کشور.
18. منصوریان، علیرضا. (1388). بررسی وضعیت آموزشی مهندسیخلاقیت بیونیکی. آموزش مهندسی ایران، 11(41)، 69-91.
19. Abdel-Rahman, W. S. M. (2021). Thermal performance optimization of parametric building envelope based on bio-mimetic inspiration. Ain Shams Engineering, 12(1), 1133-1142.
20. Abd El-Rahman, S. M., Es mail, S. I., Khalil, H. B., & El-Razaz, Z. (2020). Biomimicry inspired adaptive building envelope in hot climate. Engineering Research, 166(0), 30-47.
21. Badarnah Kadri, L. (2012). Toward the Living Envelope: Biomimetics for building envelope adaptation. Unpublished master’s thesis, University of Delft, Delft.
22. Bui, D. K. (2020). Improving building energy efficiency:
Biomimetic adaptive façade and computational data-driven
approach, Unpublished Doctoral dissertation, University of Melbourn, Melbourn.
23. Elasfouri, AS., Maraqa, R., & Tabbalat, R. (1991). Shading control by neighbouring building: application to building in Amman, Jordan. Refrigeration, 14(2), 112-116.
24. Fuertes, G. & Schiavon, S. (2014). Plug load energy analysis: The role of plug loads in LEED certification and energy modeling. Energy and Buildings, 76, 328-335.
25. Haase, M., & Amato, A. (2006). Performance Evaluation of three different façade Models for Sustainable Office Building. Green Building, 1(4), 89-103.
26. Hagan, S. (2001). Taking Shape: A New Contract between Architecture and Nature. (1-240) . The Architectural Press, Routledge, London.
27. Hwang, J., Jeong, Y., Park, J. M., & Lee, K. H. (2015). Biomimetics: Forecasting the future of science, engineering and medicine. Nanomedicine, 10(1), 5701-5713.
28. Inkarojrit, V. (2007). Multivariate Predictive window blind control models for intelligent building facade systems. Proceedings Building Simulation conference, September 3-6, (pp.787-794). Beijing: China.
29. Johnsen, K., & Winther, F. V. (2015). Dynamic Facades, the Smart Way of Meeting the Energy Requirements. Energy Procedia, 78, 1568-1573.
30. Kensek, K., & Hansanuwat, R. (2011). Environment Control Systems for sustainable design: A Methodology for Testing, Simulating and Comparing Kinetic Facade Systems. Creative Sustainable Architecture & Built Environment, 1, 27-46.
31. Klinkenberg, Brian. (2020). E-Flora BC: Electronic Atlas of the Plants of British Columbia- Oxalis oregana Nutt. Lab for Advanced Spatial Analysis, Department of Geography, University of British Columbia, Vancouver. Retrieved October 10, from https://linnet.geog.ubc.ca/Atlas/Atlas.aspx?sciname=Oxalis%20oregana
32. Kuru, A., Oldfield, Ph., Bonser, S., & Fiorito, F. (2019). Biomimetic adaptive building skins: Energy and environmental
regulation in buildings. Energy and Buildings, 205, 5-26.
33. Nakhle, C. (2019, February 13), Global Outlook: Market forces move developments in energy. Retrieved April 11, 2020, from https://www.crystolenergy.com/2019-global-outlook-market-forces-move-developments-in-energy/
34. Pacheco, R., Ordonez, G., & Martinez, G. (2012). Energy Efficient design of building: A review. Renewable and Sustainable Energy Review, 16, 3559-3573.
35. Roudsari, S., Pak, M., Smith, A., & Gill, G. (2013). Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. In Proceedings of the 13th international IBPSA conference held in Lyon, Aug 26-28, (pp. 3128-3135). Lyon: France.
36. Sadegh, S. Q. (2022). Development of two-step biomimetic design and evaluation framework for performance-oriented design of multi-functional adaptive building envelopes. Daylighting, 9(1), 13-27.
37. Sheikh, W. T., & Asghar, Q. (2019). Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings. Frontiers of Architectural Research, 8(3), 2095-2635.
38. Solvang, H., Kristiansen, T., Bottheim, R. M., & Kampel. W. (2020). Comparison and development of daylight simulation software – A case study. In E3S Web of Conferences (Vol. 172, p. 19001). Oslo: Multiconsult Norway AS, Department of Building Physics and Energy.
39. Suralkar, R. (2011). Solar Responsive Kinetic Façade Shading Systems inspired by plant movement in nature. People and Building, In Proceedings of Conference: People and Buildings held at the offices of Arup UK, 23rd. (pp.106-123).
40. Tabadkani, A., Roetzel, A., Xian Li, H., & Tsangrassoulis, A. (2021). Design approaches and typologies of adaptive facades: A review. Automation in Construction, 121, 11-23.
41. USGBC. (2015). Leadership in Energy and Environmental Design (LEED). U.S: Green Building Council.
42. Wigginton, M., & Harris, J. (2002). Intelligent skin. (193-
225). Oxford: Architectural Press.
43. Xinyue, F., Jiadong, L., & Ziyuan, W. (2020/2021). Bionic adaptive façade design.Unpublished master’s thesis, University of Politecnico, Milano.
44. Yeler, G., & Yeler, S. (2017). Models from nature for innovative building skins. Engineering and Science ,3(2), 142-165.