چکیده مقاله :
در اقلیم سرد، دسترسی ساختمانها به نور خورشید بر اثر شاخص هندسه خیابان، برای کاهش بار گرمایشی، ضروری بوده و بر عملکرد حرارتی ساختمانها موثر است. لذا هدف این مطالعه؛ ارائه نتایجی است که میتواند در طراحی بافت جدید شهرهای در حال توسعه، مورد استفاده قرار گیرد. روش تحقیق؛ کمی و در تحلیل یافتهها از روشهای آماری استفاده شده است. این مطالعه در سه مرحلهی؛ (جهت، نسبت H/W و الگوی پیشنهادی) انجام شده است. استقرار شرقیغربی 9/17 درصد جذب تابش بیشتر نسبت به جهات دیگر را دارد. میانگین جذبتابش در قطعاتشمالی، بیشتر از جنوبی است و در خیابانها با نسبت H/W پایین، میزان جذب تابش افزایش و یک همبستگی معکوس برقرار است. در الگوی پیشنهادی با افزایش عمق حیاط و ایجاد سایهبانافقی پنجرهها، برای قطعات شمالی و جنوبی افزایش 7/2 و 8/25 درصدی جذب تابش در زمستان و کاهش7/11 و 94/4 درصدی جذبتابش در تابستان رخ میدهد.
چکیده انگلیسی:
This study examines the effect of geometrical indices of a street (Orientation and H/W) on the buildings` direct solar access on an urban scale, which its results can be used by urban planners in designing new neighbourhoods and redeveloping old ones in developing cities. In cold climates, the access of buildings to sunlight due to the street geometry index is necessary to reduce the heating load and affects the thermal performance of buildings. This index (height to width ratio (H/W) and orientation) directly affects the absorption and emission of urban sunlight and changes in them can affect the amount of solar radiation absorption of the building.This study aims to investigate the amount of the buildings` solar has gained in the cold climate of Hamedan. The research method is quantitative and based on numerical data of simulating solar radiation and the geometry of the urban texture of Hamedan. Data analysis was conducted by statistical analysis of box diagram, correlation coefficient, and reference model. First, to examine the effect of street width index, fixed height, and variable street width (6 to 36 meters) and then to examine the height index, fixed street width and variable height (3 to 9 floors) were considered in the modelling. The findings reveal that east-west oriented buildings have the highest solar gain of 17.9% in the winter, and nearly 60% of the streets in the new urban texture of Hamedan are placed in the non-optimal orientation.The average solar gain in northern blocks is more than in southern blocks and streets; with a lower H/W index this gain increases indicating a reverse and intensive correlation. Index H/W compared to orientation has the greatest effect on a solar gain on the building located alongside streets. In shallow geometrical valleys, the temperature from radiation is higher than in deep valleys and as the H/W index rises, i.e., as the street becomes narrower, the direct solar gain decreases. In southern blocks, due to a deep valley in the yard, most of the south façade of a building in the winter is always in the shade of building volumes and absorbs little solar radiation. In this state, the greatest amount of absorption is reflective and scattered. Therefore, increasing the depth of the yard in these blocks to absorb more sunlight was studied in our recommended pattern. From the measured indices in this study, the H/W index has the greatest impact on solar gain for buildings located alongside streets. This index has a 123% higher influence compared to the orientation index on absorbing radiation and is of more importance. In Hamedan, regarding the H/W index, a twelve-meter street has the least absorption, thirty-five-meter, and seventy-five-meter streets have the most absorption in the winter. In our recommended patter, increasing the depth of the yard and using vertical shades for windows leads to a 2.7% and 25.8% rise in solar gain for northern and southern blocks, respectively. This pattern reduces 11.7% and 4.94% of absorption for the mentioned blocks in the summer.
منابع و مأخذ:
تابان، محسن؛ پورجعفر، محمدرضا؛ بمانیان، محمدرضا؛ و حیدری، شاهین. (1392). تعیین الگوی بهینه حیاط مرکزی در مسکن سنتی دزفول با تکیه بر تحلیل سایه دریافتی سطوح مختلف حیاط. فصلنامه نظر، 10(27)، 39-48. http://www.bagh-sj.com/article_3966.html
ثناگردربانی، الهام؛ رفیعیان، مجتبی؛ حنایی، تکتم؛ و منصفیپراپری، دانیال. (1399). کاهش تأثیرات جزایر حرارتی شهری بر سلامت انسانها از طریق تغییرات فرم شهری در اقلیم گرم و خشک شهر مشهد، نمونه موردی: الگوی بافت شطرنجی محله شاهد و بافت ارگانیک محله پاچنار. علوم و تکنولوژی محیط زیست، 22(4)، 387-375. 10.22034/jest.2020.33354.4134
خداکرمی، جمال؛ نوری، شهلا؛ و منصوری، رضا. (1399). تاثیر فرم هندسی ساختمانهای بلند بر پراکنش ذرات معلق و آلودگی هوا در محیط پیرامون آنها. نقش جهان. ۱۰(۳)، ۱۹۳-۲۰۳. https://bsnt.modares.ac.ir/article-2-41481-fa.html
علیجانی، بهلول؛ طولابینژاد، میثم؛ و صیادی، فریبا. (1396). محاسبه شدت جزیره حرارتی بر اساس هندسه شهری مورد مطالعه: محله کوچه باغ شهر تبریز. تحلیل فضایی مخاطرات محیطی. 4(3)، 99-112. https://jsaeh.khu.ac.ir/article-1-2752-fa.html
کرمیراد، سینا؛ بنازاده، بهاره؛ زارعی، هانی؛ و قزلباش، ابراهیم. (1398). ارزیابی و تحلیل آسایش حرارتی در حیاط خانههای تاریخی شهر شیراز در دوره قاجاریه. پژوهشهای باستان شناسی ایران. 9(20)، 183-202. 10.22084/nbsh.2019.17023.1792
مجرد، فیروز؛ فتحنیا، امانالله؛ و رجایینجفآبادی، سعید. (1396). ارزیابی تغییرات فضایی ـ زمانی تابش خورشیدی دریافتی سطح زمین در استان کرمانشاه با مدل "لیو و جُردن". تحقیقات کاربردی علوم جغرافیایی. 17(44)، 43-25. http://jgs.khu.ac.ir/article-1-2748-fa.html
موسوی، سیده حمیده؛ حافظی، محمدرضا؛ دلفانی، شهرام؛ و نعمتیمهر، مرجانالسادات. (1397). بررسی تغییرات الگوهای تراکم (حاصل از تغییرات سطح اشغال و ارتفاع ساختمان) بر جابهجایی هوای حوزهی شهری. صفه. 28(2)، 33-46. 20.1001.1.1683870.1397.28.2.3.2
مهدیزادهسراج، فاطمه؛ میرزائی، فهیمه؛ فیاض، ریما؛ و مفیدیشمیرانی، سیدمجید. (1389). اثر شاکله بافت بر میزان جذب تابش خورشیدی بنا در واحدهای همسایگی مناطق با اقلیم سرد (مطالعه موردی: روستای چهرقان). مسکن و محیط روستا. 38(167)، 19-34.
Aboelata A. (2020). Vegetation in different street orientations of aspect ratio (H/W 1:1) to mitigate UHI and reduce buildings’ energy in arid climate. Building and Environment, 172, 106712.
https://doi.org/10.1016/j.buildenv.2020.106712
Ahmad, K., Khare, M., & Chaudhry, K. K. (2005). Wind tunnel simulation studies on dispersion at urban street canyons and intersections a review. Wind Engineering and Industrial Aerodynamics, 93, 697–717.
https://doi.org/10.1016/j.jweia.2005.04.002
Bellos, E., Tzivanidis, C., Zisopoulou, E., Mitsopoulos, G; & Antonopoulos, A.A. (2016). An innovative Trombe wall as a passive heating system for a building in Athens-A comparison with the conventional Trombe wall and the insulated wall. . Energy and Buildings, 133, 754–769.
https://doi.org/10.1016/j.enbuild.2016.10.035
Bourbia, F., & Boucheriba, F. (2010). Impact of street design on urban microclimate for semiarid climate (Constantine). Renewable Energy, 35(2), 343-347. https://doi.org/10.1016/j.renene.2009.07.017
Bustamante, W., Uribe, D., Vera, S., (2017). An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings. Applide Energy, 198, 36–48.
https://doi.org/10.1016/j.apenergy.2017.04.046
Buyak, N.A., Deshko, V.I., & Sukhodub, I.O. (2017). Buildings energy use and human thermal comfort according to energy and exergy approach. Energy and Buildings, 146, 172–181.
https://doi.org/10.1016/j.enbuild.2017.04.008
Chang, H., Liu, Y., Shen, J.,Xang, C,. He, S., Wan, Z., Jiang, M., Duan, C,. & Shu, S. (2015). Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house. Energy Conversion and Management. 105, 967–976. https://doi.org/10.1016/j.enconman.2015.08.061
Conceicao, E.Z.E., & Lucio, M.M.J.R. (2008). Thermal study of school building in winter conditions. Building and Environment, 43(5), 782–792. https://doi.org/10.1016/j.buildenv.2007.01.029
Dussault, J.M., Gosselin, L., & Galstian, T. (2012). Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads. Solar Energy, 86(11), 3405–3416.
https://doi.org/10.1016/j.solener.2012.07.016
Georgakis Ch., & Santamouris, M. (2006). Experimental investigation of air flow and temperature distribution in deep urban canyons for natural ventilation purposes. Energy and Buildings, 38(4), 367–376.
https://doi.org/10.1016/j.enbuild.2005.07.009
Gugliermetti, F., & Bisegna, F. (2007). Saving energy in residential buildings: the use of fully reversible windows. Energy, 32(7), 1235–1247. https://doi.org/10.1016/j.energy.2006.08.004
Huang, K.T., & Li, Y.J. (2017). Impact of street canyon typology on building’s peak cooling energy demand: a parametric analysis using orthogonal experiment. Energy and Buildings, 154, 448-464.
https://doi.org/10.1016/j.enbuild.2017.08.054
Jingjing A, Yan D., Guo, S., Gao, Y., Peng, J., & Hong, T. (2020). An improved method for direct incident solar radiation calculation from hourly solar insolation data in building energy simulation. Energy & Buildings, 227(15) , 110425. https://doi.org/10.1016/j.enbuild.2020.110425
Leng, H., Chen, X., Ma, Y., Wong, N.H., & Ming, T. (2020). Urban morphology and building heating energy consumption: Evidence from Harbin, a severe cold region city. Energy and Buildings, 224, 110143.
https://doi.org/10.1016/j.enbuild.2020.110143
Li, Z., Zhang, H., Wen, C.Y., Yang, A.S., & Juan, Y.H. (2020). Effects of height-asymmetric street canyon configurations on outdoor air temperature and air quality. Building and Environment, 183, 107195.
https://doi.org/10.1016/j.buildenv.2020.107195
Loughner, C.P., Allen, D.J., Zhang, D.L., Pickering, K.E., Dickerson, R.R., & Landry, L. (2012). Roles of urban tree canopy and buildings in urban heat island effects: Paramterization and preliminary results. Applied Meteorology and Climatology, 51(10), 1775-1793. https://doi.org/10.1175/JAMC-D-11-0228.1
Mangan S.D, Oral, G.K., Kocagil I.E., & Sozen I. (2021). The impact of urban form on building energy and cost efficiency in temperate-humid zones. Building Engineering, 33, 101626.
https://doi.org/10.1016/j.jobe.2020.101626
Martin, J.P.S., Garcia-Alegre, M.C., & Guinea, D. (2017). Reducing thermal energy demand in residential buildings under Spanish climatic conditions: qualitative control strategies for massive shutter positioning. Building Simulation. 10 (5), 643–661.
https://link.springer.com/article/10.1007/s12273-017-0360-5?noAccess=true
Martinez-Rubio, A., Sanz-Adan, F., Santamaria-Pena, J., & Martinez, A. (2016). Evaluating solar irradiance over facades in high building cities, based on LiDAR technology. Appl Energy, 183, 133–147.
https://doi.org/10.1016/j.apenergy.2016.08.163
Mihai, M., Tanasiev, V., Dinca, C., Badea, A., & Vidu, R. (2017). Passive house analysis in terms of energy performance. Energy and Buildings, 144, 74–86. https://doi.org/10.1016/j.enbuild.2017.03.025
Mingfang, T. (2002). Solar control for buildings. Building and environment, 37(7), 659–664.
https://doi.org/10.1016/S0360-1323(01)00063-4
Mohajeri, N., Upadhyay, G., Gudmundsson, A., Assouline, D., Kampf, J., & Scartezzini J.L. (2016). Effects of urban compactness on solar energy potential. Renewable Energy, 93, 469-482. https://doi.org/10.1016/j.renene.2016.02.053
Mohajeri N, Gudmundssonc A, Kuncklera T, Upadhyayd, G, Assoulinea, D., Kampfe, J.H., & Scartezzini, J.L. (2019). A solar-based sustainable urban design: The effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland. Applied Energy, 240(15), 173-190. https://doi.org/10.1016/j.apenergy.2019.02.014
Oh, J., Koo, Ch., Hong, T., & Cha S.H. (2018). An integrated model for estimating the technoeconomic performance of the distributed solar generation system on building façades: Focused on energy demand and supply. Appl Energy, 228(15), 1071-1090. https://doi.org/10.1016/j.apenergy.2018.06.119
Sarralde J.J., Quinn D.J., Wiesmann, D., & Steemers K. (2015). Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London. Renewable Energy, 73, 10-17. https://doi.org/10.1016/j.renene.2014.06.028
Shi, Zh, Hsieha, Sh, Fonseca, J.Aj.a, Schluetera,A. (2020). Street grids for efficient district cooling systems in high-density cities. Sustainable Cities and Society, P:1-14(102224). https://doi.org/10.1016/j.scs.2020.102224
Shishegar, Nstaran. (2013). Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflow and Solar Access in Urban Canyons. Clean Energy Technologies. 1(1), 52-56.
10.7763/JOCET.2013.V1.13
Steemers, K. (2003). Energy and the City: density, buildings and transport. Energy and Buildings, 35(1), 3-14. https://doi.org/10.1016/S0378-7788(02)00075-0
37. Stromann-Andersen J., & Sattrup P.A. (2011).The urban canyon and building energy use: Urban density versus daylight and passive solar gains. Energy and Buildings, 43(8), 2011-2020.
,https://doi.org/10.1016/j.enbuild.2011.04.007
Vallati, A., Grignaffini, S., Romagna, M., Mauri, L., & Colucci, C. (2016). Influence of street mcanyon’s microclimate on the energy demand for space cooling and heating of buildings. Energy Procedia, 101, 941–947.
https://doi.org/10.1016/j.egypro.2016.11.119
Van Esch, M.M.E., Looman, R.H.J., & De.Bruin-Hordijk, G.J. (2012). The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct passive solar heating strategies. Energy and Buildings, 47, 189-200. https://doi.org/10.1016/j.enbuild.2011.11.042
Xue, P., Li, Q., Xie, J., Zhao, M., & Liu J. (2019). Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements. Applied Energy, 233–234, 62–70. https://doi.org/10.1016/j.apenergy.2018.10.027
Zhang, j., Xu, L., Shabunko, V., En.Rong.Tay, S., Sun, H., Siu.Yu.Lau, S., & Reindl, T. (2019). Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city. Applied Energy, 240 (15), 513-533. https://doi.org/10.1016/j.apenergy.2019.02.033
_||_