اثر نوع پیشپردازش رقومی و روش مدل سازی بر برآورد اندوخته کربن روی زمینی جنگل های زاگرس با استفاده از تصویرهای لندست 8
محورهای موضوعی : توسعه سیستم های مکانی
1 - دانش آموخته دکتری جنگلداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
2 - دانشیار گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
کلید واژه: پیش پردازش تصاویر, اندوخته کربن روی زمینی, روش مدل سازی آماری, جنگل های زاگرس, لندست 8,
چکیده مقاله :
هدف این مطالعه، بررسی اثر روش های مختلف پیش پردازش تصویرهای لندست و روش های مدل سازی بر صحت برآورد اندوخته کربن روی زمینی در جنگل های زاگرس در دو منطقه گهواره با حداقل تخریب و سرفیروزآباد با شدت تخریب بالا در استان کرمانشاه است. مقایسه روش های مختلف پیش پردازش رقومی بر روی تصویرهای لندست 8 را در قالب سناریوهای مختلف پیش پردازش های تصحیحات رادیومتری، اتمسفری، توپوگرافی و ترکیب آنها اجرا شد. برای هر سناریو چهار روش مدل سازی رگرسیون خطی، مدل جمعی تعمیمیافته، جنگل تصادفی و ماشین بردار پشتیبان مورد آزمون قرار گرفتند. در اغلب موارد تصحیح رادیومتری با ضریب تبیین اصلاحشده 0.71 (0.71=R2adj) و درصد ریشه میانگین مربعات خطای 30 درصد (0.30% =RMSe) نتایج بهتری ارائه کرد. مقایسه چهار روش مدل سازی بیانگر صحت پایین تر برآوردها در منطقه سرفیروزآباد با شدت تخریب بیشتر (0.58% =RMSe) در مقایسه با منطقه گهواره با تخریب کمتر (0.74=R2adj) است. روش جنگل تصادفی برای منطقه گهواره و روش رگرسیون خطی و مدل جمعی تعمیمیافته برای منطقه سرفیروزآباد نتایج بهتری ارائه نمود. به هرحال، نتایج نشان داد که انتخاب روش پیش پردازش و مدل سازی مناسب تأثیر قابلملاحظهای بر صحت برآورد مشخصه های کمی جنگل با استفاده از تصویرهای لندست دارد.
The aim of this study, was to evaluate the effectiveness of different preprocessing methods and modeling techniques on the accuracy of aboveground carbon stock estimates in two forest stands with different degradation levels (Gahvareh forest and SarfiruzAbad), in Zagros forests in Kurdistan province. Comparison of different digital pre-processing methods on Landsat 8 images was carried out in different scenarios of radiometric, atmospheric, topographic and their combination. In each scenario, we used four modeling methods included linear regression, generalized additive model, random forest, and support vector machine. In most cases, radiometric correction with improved correction coefficient was 0.71 (R2adj =0.71) and the root means square error of 30% (RMSe% =0.30) was outperformed. Comparison of four modeling methods indicates the lower accuracy of estimates in the SarfiruzAbad area with more degradation severity (R2adj =0.58) compared to the less damaged Gahvareh area (RMSe% =0.74). The random forest method for Gahvareh area and linear regression and a generalized additive model for SarfiruzAbad provides better results, respectively. However, our findings showed that selection of suitable preprocessing and modeling method have a noticeable effect on the accuracies of characteristics estimates in forest ecosystems by Landsat imagery.
ایرانمنش، ی. 1392. ارزیابی روشهای برآورد زیتوده و ترسیب کربن گونه بلوط ایرانی (Quercus brantii Lindle.) در جنگلهای استان چهارمحال و بختیاری، رساله دکتری، دانشگاه تربیت مدرس، 106 صفحه.
رستمزاده، ه.، ص. دارابی و ه. شهابی. 1396. آشکارسازی تغییرات جنگل بلوط با استفاده از طبقهبندی شیءگرای تصاویر چند زمانه لندست (مطالعه موردی: جنگلهای شمال استان ایلام). کاربرد سنجشازدور و GIS در علوم منابع طبیعی، 8(2): 92-110.
میرزاییزاده، و.، م. نیکنژاد و ج. اولادی قادیکلایی. 1394. ارزیابی الگوریتمهای طبقهبندی نظارتشده غیرپارامتریک در تهیة نقشه پوشش زمین با استفاده از تصاویر لندست 8. کاربرد سنجشازدور و GIS در علوم منابع طبیعی، 6(3): 44-29.
یزدانی، م.، ش. شتایی جویباری، ج.، محمدی و ی. مقصودی. 1396. بررسی مقایسهای امکان برآورد برخی مشخصههای کمی ساختار تودههای جنگلهای خزری با استفاده از دادههای رادار و تلفیق دادههای رادار با لیدار. کاربرد سنجشازدور و GIS در علوم منابع طبیعی، 6(4): 109-126.
Adhikari H, Heiskanen J, Maeda EE, Pellikka PK. 2016. The effect of topographic normalization on fractional tree cover mapping in tropical mountains: An assessment based on seasonal Landsat time series. International Journal of Applied Earth Observation and Geoinformation, 52: 20-31.
Attarchi S, Gloaguen R. 2014. Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6(5): 3693-3715.
Barrachina M, Cristóbal J, Tulla A. 2015. Estimating above-ground biomass on mountain meadows and pastures through remote sensing. International Journal of Applied Earth Observation and Geoinformation, 38: 184-192.
Chen X, Liu S, Zhu Z, Vogelmann J, Li Z, Ohlen D. 2011. Estimating aboveground forest biomass carbon and fire consumption in the US Utah High Plateaus using data from the Forest Inventory and Analysis Program, Landsat, and LANDFIRE. Ecological Indicators, 11(1): 140-148.
Du H, Cui R, Zhou G, Shi Y, Xu X, Fan W, Lü Y. 2010. The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecologica Sinica, 30(5): 257-263.
Du Y, Teillet PM, Cihlar J. 2002. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82(1): 123-134.
Frazier RJ, Coops NC, Wulder MA, Kennedy R. 2014. Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 137-146.
Freeman EA, Moisen GG, Coulston JW, Wilson BT. 2015. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Canadian Journal of Forest Research, 46(3): 323-339.
Fu L, Zhao Y, Xu Z, Wu B. 2015. Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes. Journal of Soils and Sediments, 15(2): 249-259.
Fuyi T, Mohammed S, Abdullah K, Lim H, Ishola K. 2013. A comparison of atmospheric correction techniques for environmental applications. In: 2013 IEEE International Conference on Space Science and Communication (IconSpace). IEEE, pp 233-237.
Gagliasso D, Hummel S, Temesgen H. 2014. A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area. Open Journal of Forestry, 4(1): 42.
García M, Riaño D, Chuvieco E, Danson FM. 2010. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4): 816-830.
Ghosh SM, Behera MD. 2018. Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96: 29-40.
Gleason CJ, Im J. 2012. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment, 125: 80-91.
Güneralp İ, Filippi AM, Randall J. 2014. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. International Journal of Applied Earth Observation and Geoinformation, 33: 119-126.
Hantson S, Chuvieco E. 2011. Evaluation of different topographic correction methods for Landsat imagery. International Journal of Applied Earth Observation and Geoinformation, 13(5): 691-700.
Kwak D-A, Lee W-K, Cho H-K, Lee S-H, Son Y, Kafatos M, Kim S-R. 2010. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. Journal of Plant Research, 123(4): 421-432.
Labrecque S, Fournier R, Luther J, Piercey D. 2006. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management, 226(1-3): 129-144.
Latifi H, Fassnacht FE, Hartig F, Berger C, Hernández J, Corvalán P, Koch B. 2015. Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 38: 229-241.
Lin D, Lai J, Muller-Landau HC, Mi X, Ma K. 2012. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PloS one, 7(10): e48244.
López-Serrano PM, López-Sánchez CA, Álvarez-González JG, García-Gutiérrez J. 2016. A comparison of machine learning techniques applied to landsat-5 TM spectral data for biomass estimation. Canadian Journal of Remote Sensing, 42(6): 690-705.
Lu D, Chen Q, Wang G, Liu L, Li G, Moran E. 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1): 63-105.
Moreira EP, Valeriano MM. 2014. Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification. International Journal of Applied Earth Observation and Geoinformation, 32: 208-217.
Nolè A, Law B, Magnani F, Matteucci G, Ferrara A, Ripullone F, Borghetti M. 2009. Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at a regional level. Canadian Journal of Forest Research, 39(9): 1647-1661.
Oubrahim H, Boulmane M, Bakker MR, Augusto L, Halim M. 2015. Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco. iForest-Biogeosciences and Forestry, 9(1): 125-137.
Phiri D, Morgenroth J, Xu C, Hermosilla T. 2018. Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. International Journal of Applied Earth Observation and Geoinformation, 73: 170-178.
Pimple U, Sitthi A, Simonetti D, Pungkul S, Leadprathom K, Chidthaisong A. 2017. Topographic correction of Landsat TM-5 and Landsat OLI-8 imagery to improve the performance of forest classification in the mountainous terrain of Northeast Thailand. Sustainability, 9(2): 258.
Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL. 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5): 1053-1068.
Riaño D, Chuvieco E, Salas J, Aguado I. 2003. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1056-1061.
Richter R, Kellenberger T, Kaufmann H. 2009. Comparison of topographic correction methods. Remote Sensing, 1(3): 184-196.
Saarinen N, White JC, Wulder MA, Kangas A, Tuominen S, Kankare V, Holopainen M, Hyyppä J, Vastaranta M. 2018. Landsat archive holdings for Finland: Opportunities for forest monitoring. Silva Fennica, 52: 1-11.
Shao Z, Zhang L. 2016. Estimating forest aboveground biomass by combining optical and SAR data: a case study in Genhe, Inner Mongolia, China. Sensors, 16(6): 834.
Su Y, Guo Q, Xue B, Hu T, Alvarez O, Tao S, Fang J. 2016. Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 173: 187-199.
Vanonckelen S, Lhermitte S, Van Rompaey A. 2013. The effect of atmospheric and topographic correction methods on land cover classification accuracy. International Journal of Applied Earth Observation and Geoinformation, 24: 9-21.
Vicente-Serrano SM, Pérez-Cabello F, Lasanta T. 2008. Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sensing of Environment, 112(10): 3916-3934.
Wang X, Shao G, Chen H, Lewis BJ, Qi G, Yu D, Zhou L, Dai L. 2013. An application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in northeastern China. Environmental Management, 52(3): 612-620.
Wood SN. 2017. Generalized additive models: an introduction with R, vol 2nd Edition. Chapman and Hall/CRC, 496 pp.
Wu C, Shen H, Wang K, Shen A, Deng J, Gan M. 2016. Landsat imagery-based above ground biomass estimation and change investigation related to human activities. Sustainability, 8(2): 159.
Young NE, Anderson RS, Chignell SM, Vorster AG, Lawrence R, Evangelista PH. 2017. A survival guide to Landsat preprocessing. Ecology, 98(4): 920-932.
Zandler H, Brenning A, Samimi C. 2015. Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sensing of Environment, 158: 140-155.
Zhu X, Liu D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102: 222-231.
_||_