پیشبینی اثرات تغییر اقلیم بر پراکنش بالقوه گونه بادامک (Amygdalus scoparia) با استفاده از مدلسازی اجماعی در زاگرس مرکزی
محورهای موضوعی : توسعه سیستم های مکانیمریم حیدریان آقاخانی 1 * , رضا تمرتاش 2 , زینب جعفریان 3 , مصطفی ترکش اصفهانی 4 , محمدرضا طاطیان 5
1 - دانشجوی دکتری علوم مرتع، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 - استادیار دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
3 - دانشیار دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
4 - استادیار دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
5 - استادیار دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
کلید واژه: شبکه عصبی مصنوعی, Biomod, استان چهارمحال و بختیاری, روش بوستینگ تعمیمیافته,
چکیده مقاله :
پیشبینی اثر تغییر اقلیم بر پراکنش گونههای گیاهی با ارزش، امری ضروری در راستای حفاظت و مدیریت آنها محسوب میشود. بادامک (Amygdalus scoparia) یکی از گونههای وحشی بادام و بومی ایران است. این مطالعه با هدف پیشبینی اثر تغییر اقلیم بر پراکنش جغرافیایی گونه بادامک در استان چهارمحال و بختیاری واقع در منطقه زاگرس مرکزی صورت گرفت. پنج روش مدلسازی پراکنش گونهای، شامل مدل خطی تعمیمیافته، آنالیز طبقهبندی درختی، شبکه عصبی مصنوعی، روش بوستینگ تعمیمیافته و جنگل تصادفی در چارچوب روش اجماعی و با استفاده از بسته Biomod در نرمافزار R مورد استفاده قرار گرفتند. نتایج مطالعه نشان داد که همه مدلهای مورد استفاده در این مطالعه، مقادیر AUC بالاتر از 9/0 و عملکرد عالی دارا بودند. میانگین دمای خشکترین فصل و بارندگی سالانه در حدود 85 درصد تغییرات پراکنش گونه را توجیه نمودند و بیشترین سهم را در تعیین مطلوبیت رویشگاه گونه داشتند. بر اساس نتایج حاصل از اجماع مدلها، 9 درصد (148680 هکتار) از مساحت استان برای گونه بادامک، دارای تناسب رویشگاهی زیاد تعیین شد. مساحت رویشگاه مطلوب گونه در شرایط آب و هوایی حال حاضر و آینده توسط نرمافزار ArcGIS محاسبه گردید. تغییرات پراکنش جغرافیایی گونه در سال 2050 تحت سناریوهای اقلیمی 5/4RCP و 5/8RCP نشان داد که وسعت رویشگاه گونه کاهش مییابد (به ترتیب 43 و 59 درصد) و در برخی مناطق نیز شاهد بروز مناطق مستعد وقوع گونه خواهیم بود (به ترتیب 135 و 140 درصد). از نتایج این مطالعه میتوان در برنامهریزیهای حفاظتی و اصلاحی گونه بادامک استفاده نمود.
Predicting the potential distribution of plants in response to climate change is essential for their conservation and management. Amygdalus scoparia is a wild almond species native to Iran Therefore, this study aimed at predicting the effect of climate change on the geographical distribution of A. scoparia in Chaharmahal and Bakhtiari province in the central Zagros region. In this regard, we used 5 modeling approaches, Generalized Linear Model (GLM), Classification Tree Analysis (CTA), Artificial Neural Network (ANN), Generalized Boosting Method (GBM) and Random Forest (RF) to determine relationships between the occurrence of species and environmental factors under the ensemble framework by using Biomod and R software. The results showed that AUC values greater than 0.9 and functioning of all models been excellent. The mean temperature of the driest quarter and Annual precipitation had the most important role for habitat suitability of this species and (85%) changes in A. scoparia distribution was justified. The results of the model showed that 9%, (148680 ha) of in Chaharmahal and Bakhtiari province for the A. scoparia have had high habitat suitability. Area of suitable habitat was calculated by ArcGIS software on current and future climate conditions. Under RCP4.5 and RCP8.5 climate scenario A. scoparia might lose (Respectively 43% and 59%) of its climatically suitable habitats due to climate change factors, by 2050, while in a number of areas (135% and 140%), the current unsuitable habitats may be converted to suitable. The results of this study can be used in planning, conservation and rehabilitation of A. scoparia.
1. آریاپور، ع.، م. حدیدی، ف. امیری و ع. ح. پیراوند. 1394. تعیین مدل شایستگی تولید علوفه در مراتع سراب سفید بروجرد با استفاده از سیستم سامانه اطلاعات جغرافیایی. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 6(1): 47-60.
2. الوانینژاد، س. 1378. بررسی عوامل موثر بر پراکنش گونه بادام کوهی در دو منطقه مختلف استان فارس. پایاننامه کارشناسی ارشد جنگلداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس. 144 صفحه.
3. برنا، ف.، ر. تمرتاش، م. ر. طاطیان و و. غلامی. 1395. مدلسازی رویشگاه بالقوه گون سفید با استفاده از روشهای تحلیل عاملی آشیان بومشناختی و رگرسیون لجستیک (مطالعه موردی: مراتع ییلاقی بلده نور). سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(4): 45-61.
4. ثابتی، ح. 1355. جنگلها و درختان و درختچههای ایران. انتشارات سازمان تحقیقات کشاورزی و منابع طبیعی. 806 صفحه.
5. جعفریان، ز.، ح. ارزانی، م. جعفری، ق. زاهدی و ح. آذرنیوند. 1391. تهیه نقشه پیشبینی مکانی گونههای گیاهی با استفاده از رگرسیون لجستیک (مطالعه موردی: مراتع رینه، کوه دماوند). پژوهشهای جغرافیای طبیعی، 44(1): 1-18.
6. رحمتی، ز.، م. ترکش اصفهانی، س. پورمنافی و م. ر. وهابی. 1394. تعیین رویشگاه بالقوه گونه گیاهی کما (Ferula ovina) با استفاده از مدل شبکه عصبی مصنوعی در منطقه فریدونشهر اصفهان. بومشناسی کاربردی، 4(11): 41-53.
7. زارع چاهوکی، م. ع.، م. عباسی و ح. آذرنیوند. 1393. ارزیابی قابلیت مدل شبکه عصبی مصنوعی در پیشبینی پراکنش مکانی گونههای گیاهی (مطالعه موردی: مراتع طالقان میانی). مرتع، 8(2): 106-115.
8. سالاریان، ع.، ا. متاجی و ی. ایرانمنش. 1387. بررسی نیاز رویشگاهی گونه بادامک (Amygdalusscoparia Spach) در جنگلهای زاگرس (مطالعه موردی رویشگاه کرهبس، استان چهارمحال و بختیاری). تحقیقات جنگل و صنوبر ایران، 16(4): 528-542.
9. سنگونی، ح.، ح. ر. کریمزاده، م. ر. وهابی و م. ترکش اصفهانی. 1391. تعیین رویشگاه بالقوه گون سفید (Astragalus gossypinus Fisher) در منطقه غرب اصفهان با تحلیل عاملی آشیان اکولوژیک. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 3(2): 1-13.
10. قهرمان، ا. و ف. عطار. 1377. تنوع زیستی گونههای گیاهی ایران. انتشارات دانشگاه تهران. 1210 صفحه.
11. گلستانه، س. ر.، ف. کرمپور و ن. فرار. 1391. معرفی عوامل خسارتزای درختچههای بادام کوهی در منطقه کوهسیاه دشتی استان بوشهر. تحقیقات حمایت و حفاظت جنگلها و مراتع ایران، 10(2): 153-164.
12. مظفریان، و. 1383. درختان و درختچههای ایران. انتشارات فرهنگ معاصر. 671 صفحه.
13. Abbasi S. 2017. Persian gum: a novel natural hydrocolloid. Nutrition and Food Sciences Research, 4(1): 1-2.
14. Ardestani EG, Tarkesh M, Bassiri M, Vahabi MR. 2015. Potential habitat modeling for reintroduction of three native plant species in central Iran. Journal of Arid Land, 7(3): 381-390.
15. Bakkenes M, Alkemade J, Ihle F, Leemans R, Latour J. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8(4): 390-407.
16. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4): 365-377.
17. Cheng L, Lek S, Lek-Ang S, Li Z. 2012. Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica-Ecology and Management of Inland Waters, 42(2): 127-136.
18. Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1): 38-49.
19. Franklin J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press. 320 pp.
20. Grenouillet G, Buisson L, Casajus N, Lek S. 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 34(1): 9-17.
21. Hamann A, Wang T. 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87(11): 2773-2786.
22. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT. 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30(6): 751-777.
23. Hodd RL, Bourke D, Skeffington MS. 2014. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation. PloS one, 9(4-e95147): 1-13.
24. Intergovernmental Panel on Climate Change. 2014. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge University Press, 650 pp.
25. Kafash A, Kaboli M, Koehler G, Yousefi M, Asadi A. 2016. Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard, Saara loricata (Blanford, 1874), in Iran: an insight into the impact of climate change. Turkish Journal of Zoology, 40(2): 262-271.
26. Ladizinsky G. 1999. On the origin of almond. Genetic Resources and Crop Evolution, 46(2): 143-147.
27. Marmion M, Luoto M, Heikkinen RK, Thuiller W. 2009. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecological Modelling, 220(24): 3512-3520.
28. Meier ES, Lischke H, Schmatz DR, Zimmermann NE. 2012. Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecology and Biogeography, 21(2): 164-178.
29. Pachauri RK, Allen MR, Barros V, Broome J, Cramer W, Christ R, Church J, Clarke L, Dahe Q, Dasgupta P. 2014. Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, IPCC, 153 pp.
30. Parmesan C, Gaines S, Gonzalez L, Kaufman DM, Kingsolver J, Townsend Peterson A, Sagarin R. 2005. Empirical perspectives on species borders: from traditional biogeography to global change. Oikos, 108(1): 58-75.
31. Pearson RG, Dawson TP. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global ecology and biogeography, 12(5): 361-371.
32. Pearson RG, Thuiller W, Araújo MB, Martinez‐Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC. 2006. Model‐based uncertainty in species range prediction. Journal of Biogeography, 33(10): 1704-1711.
33. Périé C, de Blois S. 2016. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes. PeerJ, 4(e2218): 1-27.
34. Potta S. 2004. Application of Stochastic Downscaling Techniques to Global Climate Model Data for Regional Climate Prediction, MSc. Faculty of the Louisiana State University and Agricultural and Mechanical College, Sri Venkateswara University, 153 pp.
35. Potter KM, Hargrove WW. 2013. Quantitative assessment of predicted climate change pressure on North American tree species. Mathematical and Computational Forestry & Natural Resource Sciences, 5(2): 151-169.
36. Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA. 2007. Conservation planning in a changing world. Trends in Ecology & Evolution, 22(11): 583-592.
37. Sangoony H, Vahabi MT, M‒Soltani S. 2016. Rang shift of Bromus tomentellus BOISS. as a reaction to climate change in central Zagros, Iran. Applied Ecology and Environmental Research, 14(4): 85-100.
38. Sinclair S, White M, Newell G. 2010. How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15(1): 8 [online].
39. Sutton WB, Barrett K, Moody AT, Loftin CS, deMaynadier PG, Nanjappa P. 2014. Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the Northeastern United States. Forests, 6(1): 1-26.
40. Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285-1293.
41. Thuiller W, Lafourcade B, Engler R, Araújo MB. 2009. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32(3): 369-373.
42. Thuiller W. 2007. Biodiversity: climate change and the ecologist. Nature, 448(7153): 550-552.
43. Thuiller W. 2014. Editorial commentary on “BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change”. Global change biology, 20(12): 3591-3592.
44. Towsend P, Soberón J, Pearson R, Anderson R, Martínez-Meyer E, Nakamura M, Araújo M. 2011. Ecological niches and geographic distributions, Princeton University Press, Princeton, NJ. 328 pp.
45. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin J-M, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature, 416(6879): 389-395.
_||_