بازسازی سری های زمانی داده های ماهواره ای دمای سطح زمین با استفاده از الگوریتم تجزیه و تحلیل هارمونیک سری های زمانی (HANTS)
محورهای موضوعی : توسعه سیستم های مکانیحمیدرضا غفاریان مالمیری 1 , هادی زارع خورمیزی 2 *
1 - استادیار دانشکده علوم انسانی و اجتماعی، دانشگاه یزد
2 - دانشجوی کارشناسی ارشد مرتعداری، دانشگاه یزد
کلید واژه: سنجش از دور, سنجنده مودیس, دمای سطح زمین, تجزیه و تحلیل هارمونیک, سریهای زمانی,
چکیده مقاله :
دمای سطح زمین (LST) یکی از پارامترهای اساسی در مبادله انرژی بین زمین و اتمسفر است. در بسیاری از علوم مختلف از جمله اقلیمشناسی، هیدرولوژی، کشاورزی، اکولوژی، بهداشت عمومی و علوم زیستمحیطی استفاده از سری های زمانی LST کاربرد فراوان دارد. اما سری های زمانی داده های ماهواره ای معمولاً دارای داده های ناقص، از دست رفته و یا غیر قابل قبول هستند که این به دلیل حضور ابرها در تصاویر، وجود ذرات گرد و غبار در اتمسفر، عدم کارایی الگوریتم های بکار رفته در محاسبه داده ها و بعضاً عملکرد نادرست سنجنده است. در این مطالعه به منظور رفع مشکل داده های از دست رفته و دور افتاده از الگوریتم تجزیه و تحلیل هارمونیک سری های زمانی (HANTS) استفاده شد. همچنین در این مطالعه از محصول LST سنجنده MODIS سال 2015 MOD11A1 که دارای قدرت تفکیک مکانی یک کیلومتر و قدرت تفکیک زمانی روزانه و همچنین حاوی اطلاعات دمای سطح زمین در زمان روز و شب است، استفاده گردید. منطقه مطالعاتی شامل یک فریم تصویر در سیستم شبکه بندی سینوسی MODIS با شماره افقی 22 و عمودی 5 (h22v05) است. ارزیابی نتایج کیفیت داده ها نشان می دهد به طور میانگین در سری زمانی تصاویر LST مورد استفاده در زمان روز و شب به ترتیب 8/36 و 6/35 درصد داده ها توسط پوشش ابر از دست رفته است. ارزیابی نتایج الگوریتم HANTS در بازسازی تصاویر بدون پوشش ابر نشان می دهد خطای جذر میانگین مربعات (RMSE) بین داده های اصلی و بازسازی شده در سری زمانی LST مورد مطالعه در زمان روز و شب به ترتیب 87/3 و 68/2 درجه کلوین است. به طور کلی نتایج این پژوهش نشان می دهد که الگوریتم HANTS به طور مؤثری می تواند در رفع مشکل داده های از دست رفته و داده های دور افتاده و همچنین ارتقا کیفیت داده ها در سری های زمانی LST سنجنده MODIS مورد استفاده قرار گیرد.
Land surface temperature (LST) is an essential parameter in the energy exchange between the earth surface and atmosphere. It is widely used in various scientific fields, such as climatology, hydrology, agriculture, ecology, public health and environmental science where the time series analysis of LST is vital. One of the methods to estimate LST is to use thermal remote sensing technique and infra-red satellite imageries. But, the time series satellite data are commonly prone to miss data, outliers (spatially and temporally) due to clouds, aerosols, cloud masking algorithm malfunctioning and sensor errors. In this study, to solve the problem of missing data (gaps) and outliers Harmonic ANalysis of Time Series algorithm (HANTS) was used. The day and night MODIS LST products (MOD11A1) were used in 2015, with 1 kilometers and daily spatial and temporal resolution, respectively. The study area covers most part of Iran, Turkmenistan and the Caspian Sea, which belongs to an image frame that in the sinusoidal MODIS frame system has the horizontal and vertical number of 22 and 5 (h22v05), respectively. The quality evaluation of original data showed that on average 36.8 and 35.6 percentage of data was covered by a cloud by day and night time. The results of the HANTS algorithm illustrated that the Root Mean Square Error (RMSE) between the original and reconstructed data were 3.87 and 2.68 Kelvin during the day and night time. The results of this study indicate that HANTS algorithm can effectively solve the problem of gaps and outliers and improve the quality of data used in time series LST of MODIS.
1. مباشری، م. ر.، ن. ا. غلامی و م. فرجزاده اصل. 1390. ارتقای الگوریتم آشکارسازی ابر MODIS با استفاده از تصویر هم زمان ASTER، مطالعه موردی: شهر دامغان. برنامه ریزی و آمایش فضا، 15(2): 81-99.
2. Ackerman SA, Strabala KI, Menzel WP, Frey RA, Moeller CC, Gumley LE. 1998. Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research: Atmospheres, 103(D24): 32141-32157.
3. Alfieri S, Lorenzi FD, Menenti M. 2013. Mapping air temperature using time series analysis of LST: the SINTESI approach. Nonlinear Processes in Geophysics, 20(4): 513-527.
4. Bloomfield P. 2000. Fourier Analysis of Time Series An Introduction. North Carolina State University, Raleigh, North Carolina: John wiley &Sons, INC. 288 pp.
5. Cui Y, Jia L, Hu G, Zhou J. 2015. Mapping of interception loss of vegetation in the Heihe River basin of China using remote sensing observations. IEEE Geoscience and Remote Sensing Letters, 12(1): 23-27.
6. Estes Jr MG, Al-Hamdan MZ, Crosson W, Estes SM, Quattrochi D, Kent S, McClure LA. 2009. Use of remotely sensed data to evaluate the relationship between living environment and blood pressure. Environmental Health Perspectives, 117(12): 1832-1838.
7. Frey RA, Ackerman SA, Liu Y, Strabala KI, Zhang H, Key JR, Wang X. 2008. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. Journal of Atmospheric and Oceanic Technology, 25(7): 1057-1072.
8. Ghafarian Malamiri HR. 2015. Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance (Doctoral dissertation), Technische Universiteit Delft, The Netherlands. 196 pp.
9. Jia L, Shang H, Hu G, Menenti M. 2011. Phenological response of vegetation to upstream river flow in the Heihe River basin by time series analysis of MODIS data. Hydrology and Earth System Sciences, 15: 1047-1064.
10. Jia L, Xi G, Liu S, Huang C, Yan Y, Liu G. 2009. Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland. Hydrology and Earth System Sciences, 13(10): 1775-1787.
11. Jiang X, Wang D, Tang L, Hu J, Xi X. 2008. Analysing the vegetation cover variation of China from AVHRR‐NDVI data. International Journal of Remote Sensing, 29(17-18): 5301-5311.
12. Julien Y, Sobrino JA, Verhoef W. 2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103(1): 43-55.
13. Julien Y, Sobrino JA. 2010. Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sensing of Environment, 114(3): 618-625.
14. Jun W, Zhongbo S, Yaoming M. 2004. Reconstruction of a cloud-free vegetation index time series for the Tibetan Plateau. Mountain Research and Development, 24(4): 348-353.
15. Li Z-L, Tang B-H, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131: 14-37.
16. Lu D, Mausel P, Brondizio E, Moran E. 2004. Change detection techniques. International Journal of Remote Sensing, 25(12): 2365-2401.
17. Menenti M, Azzali S, Verhoef W, Van Swol R. 1993. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images. Advances in Space Research, 13(5): 233-237.
18. Menenti M, Malamiri HG, Shang H, Alfieri SM, Maffei C, Jia L. 2016. Observing the response of terrestrial vegetation to climate variability across a range of time scales by time series analysis of land surface temperature. In: Multitemporal Remote Sensing. Springer, pp 277-315.
19. Musial JP, Verstraete MM, Gobron N. 2011. Comparing the effectiveness of recent algorithms to fill and smooth incomplete and noisy time series. Atmospheric Chemistry and Physics, 11(15): 7905-7923.
20. Ricker N. 1953. Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics, 18(4): 769-792.
21. Roerink G, Menenti M, Verhoef W. 2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9): 1911-1917.
22. Running SW, Justice C, Salomonson V, Hall D, Barker J, Kaufmann Y, Strahler AH, Huete A, Muller J-P, Vanderbilt V. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing, 15(17): 3587-3620.
23. Saunders RW, Kriebel KT. 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing, 9(1): 123-150.
24. Schmugge T, French A, Ritchie JC, Rango A, Pelgrum H. 2002. Temperature and emissivity separation from multispectral thermal infrared observations. Remote Sensing of Environment, 79(2): 189-198.
25. Simpson JJ, Gobat JI. 1996. Improved cloud detection for daytime AVHRR scenes over land. Remote Sensing of Environment, 55(1): 21-49.
26. Stowe L, McClain E, Carey R, Pellegrino P, Gutman G, Davis P, Long C, Hart S. 1991. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Advances in Space Research, 11(3): 51-54.
27. Sun D, Pinker RT, Basara JB. 2004. Land surface temperature estimation from the next generation of Geostationary Operational Environmental Satellites: GOES M–Q. Journal of Applied Meteorology, 43(2): 363-372.
28. Tatem AJ, Goetz SJ, Hay SI. 2004. Terra and Aqua: new data for epidemiology and public health. International Journal of Applied Earth Observation and Geoinformation, 6(1): 33-46.
29. Van Hoek M, Jia L, Zhou J, Zheng C, Menenti M. 2016. Early drought detection by spectral analysis of satellite time series of precipitation and normalized difference vegetation index (NDVI). Remote Sensing, 8(5): 422.
30. Verhoef W, Menenti M, Azzali S. 1996. Cover A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981-1992). International Journal of Remote Sensing, 17(2): 231-235.
31. Wan Z, Zhang Y, Zhang Q, Li Z-l. 2002. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83(1): 163-180.
32. Wigneron J-P, Kerr Y, Chanzy A, Jin Y-Q. 1993. Inversion of surface parameters from passive microwave measurements over a soybean field. Remote Sensing of Environment, 46(1): 61-72
33. Xu Y, Shen Y. 2013. Reconstruction of the land surface temperature time series using harmonic analysis. Computers & Geosciences, 61: 126-132.
34. Zhou J, Jia L, Menenti M. 2015. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sensing of Environment, 163: 217-228.
_||_