نیمرخ اسیدهای چرب برخی گونه¬های گیاهی تیره چتریان با رویکردی بر روابط کیموتاکسونومی
محورهای موضوعی : فیتوشیمیزینب قلی زاده 1 , مهدی قاسمی 2 * , حمزه علی شیرمردی 3
1 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد
2 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد
3 - دانشگاه علوم کشاورزی و منابع طبیعی ساری
کلید واژه: اسید پتروسلینیک, اسید چرب اشباع, ارتفاع, چتریان, روغن, غیراشباع,
چکیده مقاله :
گیاهان یکی از منابع مهم تأمین کننده¬ی اسیدهای چرب هستند. انواع اسیدهای چرب اشباع و غیراشباع در صنایع غذایی، سلامت، اکوفیزیولوژی گیاهی و کموتاکسونومی کاربرد فراوان دارند. این پژوهش با هدف بررسی میزان روغن، نیمرخ اسیدهاي چرب و روابط کموتاکسونومیک برخی گونه¬های گیاهی تیره¬ی چتریان در ایران انجام شد. استخراج روغن توسط روش سوکسوله و جداسازی ترکیبات با دستگاه کروماتوگرافی گازي (GC) پس از مشتق¬سازی به صورت متیل استر انجام شد. تجزيه¬ي خوشه¬اي گونه¬ها با الگوريتم فاصله¬ی بين دو داده و ماتريس تشابه اقليدسي با استفاده از نرم¬افزار PAST 3.17 انجام گرفت. براساس نتایج، میانگین بازده روغن گونه¬های گیاهی بین 1/5 تا 18/26 درصد برآورد شد و همبستگی مثبت بالایی بین ارتفاع از سطح دریای رویشگاه¬ها و بازده روغن وجود داشت. اسید پتروسلینیک (C18:1(n-6)) و پس از آن اسید آلفا-لینولنیک (C18:3(n-3)) ترکیب اصلی اسیدهای چرب همه گونه¬ها بود. اسید اولئیک و اسید گاما-لینولنیک تنها به ترتیب در گونه¬های جنس Ferula و Pimpinella شناسایی شدند. درصد مجموع اسیدهای چرب امگا-3 از 42/10 تا 99/17 بین گونه¬ها متغییر بود. Smyrnium cordifolium، Ferulago angulata، Tetrataenium lasiopetalum و Conium maculatum غنی از اسید پتروسلینیک (60 تا 78 درصد) بودند. دندروگرام شیمیایی براساس 18 اسیدهای چرب با ضریب تشابه بالا جنس¬های Ferula را در یگ گروه و Conium را در یک گروه جداگانه مشابه رده¬بندی گیاه¬شناسی از یکدیگر تمایز داد. نتایج نشان می¬دهد که ترکیب اسید چرب بذرهای برخی از جنس¬های تیره¬ی چتریان می¬تواند همراه با ویژگی¬های مورفولوژیکی و مولکولی، به عنوان یک ابزار جهت برطرف کردن پیچیدگی¬های تاکسونومیکی میان قبیله¬ها و جنس¬های تیره¬ی چتریان در فلور ایران مورد استفاده قرار گیرد.
Plants are one of the important sources of fatty acids. Types of saturated and unsaturated fatty acids are widely used in food industry, health, plant ecophysiology and chemotaxonomy. This research was conducted with the aim of investigating the oil content, fatty acid profile and chemotaxonomic relationships of some plant species of the Apiaceae family in Iran. Oil extraction was done by soxhlet method and compounds were separated by gas chromatography (GC) after derivatization in the form of methyl ester. Species cluster analysis was done with distance algorithm between two data and Euclidean similarity matrix using PAST 3.17 software. Based on the results, the average oil yield of plant species was estimated between 5.1% and 26.18% and there was a high positive correlation between the altitude of the habitats and the oil yield. Petroselinic acid (C18:1(n-6)) and alpha-linolenic acid (C18:3(n-3)) were the main compositions of fatty acids of all species. Oleic acid and gamma-linolenic acid were detected only in Ferula and Pimpinella species, respectively. The percentage of total omega-3 fatty acids varied from 10.42 to 17.99 among species. Smyrnium cordifolium, Ferulago angulata, Tetrataenium lasiopetalum and Conium maculatum were rich in petroselinic acid (60-78%). Chemical dendrogram based on 18 fatty acids with high similarity coefficient distinguished Ferula species in one group and Conium in a separate group similar to botanical classification. The results show that the fatty acid composition of the seeds of some genera of the Apiaceae family, together with the morphological and molecular characteristics, can be used as a tool to solve the taxonomic complexities between the tribes and genera of the Apiaceae family. to be used in the flora of Iran.
Ajani, Y., Ajani, A., Cordes, J. M., Watson, M. F., and Downie, S. R. (2008). Phylogenetic analysis of nrDNA ITS sequences reveals relationships within five groups of Iranian Apiaceae subfamily Apioideae. Taxon. 57(2): 383-401.
Badami, R. and Patil, K. B. (1980). Structure and occurrence of unusual fatty acids in minor seed oils. Progress in lipid research. 19(3-4): 119-153.
Bagci, E., (2007). Fatty acids and tocochromanol patterns of some Turkish Apiaceae (Umbelliferae) plants; a chemotaxonomic approach. Acta Botanica Gallica. 154(2): 143-151.
Baker, E. J. (2024). Alternative sources of bioactive omega-3 fatty acids: what are the options? Current Opinion in Clinical Nutrition and Metabolic Care 27(2): 106-115.
Beyhan, O., Elmastas, M., Genc, N., and Aksit, H. (2011). Effect of altitude on fatty acid composition in Turkish hazelnut (Coryllus avellana L.) varieties. African Journal of Biotechnology. 10(71): 16064-16068.
Bhargava, V. V., Patel, S. C., and Desai, K. S. (2013). Importance of terpenoids and essential oils in chemotaxonomic approach. International Journal of Herbal Medicine. 1(2): 14-21.
Breuer, B., Stuhlfauth, T., Fock, H. and Huber, H. (1987). Fatty acids of some Cornaceae, Hydrangeaceae, Aquifoliaceae, Hamamelidaceae and Styracaceae. Phytochemistry. 26(5): 1441-1445.
Calvino, C. I. and Downie, S. R. (2007). Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on chloroplast DNA sequences. Molecular phylogenetics and evolution. 44(1): 175-191.
Caprioli, G., Fiorini, D., Maggi, F., Marangoni, M., Papa, F., Vittori, S., and Sagratini, G. (2014). Ascorbic acid content, fatty acid composition and nutritional value of the neglected vegetable Alexanders (Smyrnium olusatrum L., Apiaceae). Journal of Food Composition and Analysis. 35(1): 30-36.
Coşge, B., Kiralan, M. and Gürbüz, B. (2008). Characteristics of fatty acids and essential oil from sweet fennel (Foeniculum vulgare Mill. var. dulce) and bitter fennel fruits (F. vulgare Mill. var. vulgare) growing in Turkey. Natural Product Research. 22(12): 1011-1016.
Daga, P., Vaishnav, S. R., Dalmia, A. and Tumaney, A. W. (2022). Extraction, fatty acid profile, phytochemical composition and antioxidant activities of fixed oils from spices belonging to Apiaceae and Lamiaceae family. Journal of Food Science and Technology. 1-14.
Dutta, A., Panchali, T., Khatun, A., Jarapala, S. R., Das, K., Ghosh, K. ... and Pradhan, S. (2023). Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Scientific Reports. 13(1): 14125.
Ghafoor, K., Doğu, S., Mohamed Ahmed, I. A., Fadimu, G. J., Geçgel, Ü. Al Juhaimi, F. ... and Özcan, M. M. (2019). Effect of some plant species on fatty acid composition and mineral contents of Ferulago, Prangos, Ferula, and Marrubium seed and oils. Journal of food processing and Preservation. 43(5): e13939.
Ghasemi, M., Mirlohi, A., Ayyari, M., and Shojaeiyan, A. (2015). Kelussia odoratissima Mozaff. as a rich source of essential fatty acids and phthalides. Journal of HerbMed Pharmacology. 4(4): 115-120.
Graham, S. A. and Kleiman, R. 1992. Composition of seed oils in some Latin American Cuphea (Lythraceae). Industrial crops and products. 1(1): 31-34.
Grayer, R. J., Chase, M. W. and Simmonds, M. S. (1999). A comparison between chemical and molecular characters for the determination of phylogenetic relationships among plant families: an appreciation of Hegnauer’s “Chemotaxonomie der Pflanzen”. Biochemical Systematics and Ecology. 27(4): 369-393.
Guil-Guerrero, J. L., Garcıa-Maroto, F., Vilches-Ferron, M. A., and Lopez-Alonso, D. (2003). Gamma-linolenic acid from fourteen Boraginaceae species. Industrial crops and products. 18(1): 85-89.
Hajib, A., El Harkaoui, S., Choukri, H., Khouchlaa, A., Aourabi, S., El Menyiy, N. ... and Matthaeus, B. (2023). Apiaceae Family an Important Source of Petroselinic Fatty Acid: Abundance, Biosynthesis, Chemistry, and Biological Proprieties. Biomolecules. 13(11): 1675.
Hemavathy, J., and Prabhakar, J. V. (1988). A research note lipid composition of cumin (Cuminum cyminum L.) seeds. Journal of Food Science. 53(5): 1578-1579.
Holzapfel, C. W., Van Wyk, B. E., De Castro, A., Marais, W. and Herbst, M. (1995). A chemotaxonomic survey of kaurene derivatives in the genus Alepidea (Apiaceae). Biochemical Systematics and ecology. 23(7): 799-803.
Iwata, N. G., Pham, M., Rizzo, N. O., Cheng, A. M., Maloney, E., and Kim, F. (2011). Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells. PLoS One. 6(12): e29600.
Kleiman, R. and Spencer, G. F. (1982). Search for new industrial oils: XVI. Umbelliflorae seed oils rich in petroselinic acid. Journal of the American Oil Chemists' Society. 59(1): 29-38.
Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M. and Iba, K. (1994). Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiology. 105 (2): 601-605.
Kozłowska, M., Gruczyńska, E., Ścibisz, I., and Rudzińska, M. (2016). Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food chemistry. 213: 450-456.
Kris-Etherton, Penny M.; William S. Harris, and Lawrence J. Appel. (2002). Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation. 106: (21): 2747–57.
Laribi, B., Kouki, K., Bettaieb, T., Mougou, A. and Marzouk, B. (2013). Essential oils and fatty acids composition of Tunisian, German and Egyptian caraway (Carum carvi L.) seed ecotypes: A comparative study. Industrial Crops and Products. 41: 312-318.
Larsen, T. O., Smedsgaard, J., Nielsen, K. F., Hansen, M. E. and Frisvad, J. C. (2005). Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Natural product reports. 22(6): 672-695.
Leibovitz, B., Hu, M. L. and Tappel, A. L., 1990. Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices. The Journal of Nutrition. 120(1): 97-104.
Liu, L., Hammond, E. G. and Wurtele, E. S. (1994). Accumulation of petroselinic acid in developing somatic carrot embryos. Phytochemistry. 37(3): 749-753.
Metcalfe, L. D., Schmitz, A. A. and Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical chemistry. 38(3): 514-515.
Mikolajczak, K. L., Smith, C. R. and Wolff, I. A. (1963). Three new oilseeds rich in cis-11-eicosenoic acid. Journal of the American Oil Chemists' Society. 40(7): 294-295.
Moazzami Farida, S. H., Radjabian, T., Ranjbar, M., Salami, S. A., Rahmani, N., and Ghorbani, A. (2016). Fatty acid patterns of seeds of some Salvia species from Iran–a chemotaxonomic approach. Chemistry and Biodiversity. 13(4): 451-458.
Mongrand, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., and Bessoule, J. J. (2005). Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. Phytochemistry. 66(5): 549-559.
Mousavi, S., Mozaffarian, V., Mummenhoff, K., Downie, S. R., and Zarre, S. (2020). An updated lineage-based tribal classification of Apiaceae subfamily Apioideae with special focus on Iranian genera. Systematics and Biodiversity. 19(1): 89-109.
Mozaffarian, V. 2013. Identification of medicinal and aromatic plant of Iran. Farhang Moaser Pub. 1444.
Msaada, K., Hosni, K., Taarit, M. B., Hammami, M., and Marzouk, B. (2009). Effects of growing region and maturity stages on oil yield and fatty acid composition of coriander (Coriandrum sativum L.) fruit. Scientia Horticulturae. 120(4): 525-531.
Namazi, L., Sahari, M.A., Zarringhalami, S. and Qanati, K. (2011). The possibility of functional oil formulation of Omega-3 and Omega-6 of Linume usitatissmum, Cartamus tinctorius L. seeds and evaluation of physico-chemical characteristics during 4 months. Iranian Journal of Medicinal Plants. 40(4): 144-159
Nejadhabibvash, F., Pirvash, A., and Khamoushi, S. (2020). Evaluation and comparison of oil content and fatty acid profiles of different populations of Rosa canina L. in different habitats of Azerbaijan, North-West Iran. Eco-phytochemical Journal of Medicinal Plants. 8(2): 45-59.
Ngo‐Duy C. C., Destaillats F., Keskitalo M., Arul J., and Angers P. (2009). Triacylglycerols of Apiaceae seed oils: composition and regiodistribution of fatty acids. European journal of lipid science and technology. 111 (2): 164-169.
Palazzo, F. G. and Tamburello, A. (1914). Atti Reale Acad. Lincei, Rendiconti Cl Classe di science fisiche, matematiche e naturali. 5 (23): 352.
Radulović, N. S., Mladenović, M. Z., and Blagojević, P. D. (2013). A ‘Low‐Level’Chemotaxonomic Analysis of the Plant Family Apiaceae: The Case of Scandix balansae Reut. ex Boiss.(Tribe Scandiceae). Chemistry and Biodiversity. 10(7): 1202-1219.
Rahimi, K., Givi, M. E., Rezaie, A., Hekmatmanesh, M., and Ardakani, Y. S. (2024). The protective effects of Gamma-linolenic acid against indomethacin-induced gastric ulcer in rats. British Journal of Nutrition. 1-28.
Reynolds, T. (2007). The evolution of chemosystematics. Phytochemistry. 68(22): 2887-2895.
Saeedi, K., and Omidbaigi, R. (2010). Chemical characteristics of the seed of Iranian endemic plant Kelussia odoratissima. Chemistry of natural compounds. 46: 813-815.
Saleh-E-In, M. M., and Roy, S. K. (2007). Studies on fatty acid composition and proximate analyses of Anethum sowa L. (dill) seed. Bangladesh Journal of Scientific and Industrial Research. 42(4): 455-464.
Salman, H. A., Yaakop, A. S., Al-Rimawi, F., Makhtar, A. M. A., Mousa, M., Semreen, M. H., and Alharbi, N. S. (2024). Ephedra alte extracts' GC-MS profiles and antimicrobial activity against multidrug-resistant pathogens (MRSA). Heliyon.
Saracoglu, H.T., Zengin, G., Akin, M. and Aktumsek, A. (2012). A comparative study on the fatty acid composition of the oils from five Bupleurum species collected from Turkey. Turkish Journal of Biology. 36(5): 527-532.
Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A., and Merah, O. (2017). The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial crops and products. 109: 661-671.
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine and pharmacotherapy. 56(8): 365-379.
Stuessy, T. F. (1990). Plant Taxonomy. Columbia Univ. Press, New York, United State of America.
Stuhlfauth, T., Fock, H., Huber, H., and Klug, K. (1985). The distribution of fatty acids including petroselinic and tariric acids in the fruit and seed oils of the Pittosporaceae, Araliaceae, Umbelliferae, Simarubaceae and Rutaceae. Biochemical systematics and ecology. 13(4): 447-453.
Takeuchi, Y., Yamaoka, Y., Fukushima, S., Miyawaki, K., Taguchi Yasukawa, H., Kishimoto, S. and Suzuki, M. (1998). Skin penetration enhancing action of cis-unsaturated fatty acids with. Omega.-9, and. Omega.-12-chain lengths. Biological and Pharmaceutical Bulletin; 21 (5): 484-491.
Thomas, A., Matthäus, B. and Fiebig, H. J. (2000). Fats and fatty oils. Ullmann's Encyclopedia of Industrial Chemistry.
Tickell, J. and Tickell, K. (2003). From the fryer to the fuel tank: the complete guide to using vegetable oil as an alternative fuel. Biodiesel America.
Tykheev, Z. A., Anenkhonov, O. A., Zhigzhitzhapova, S. V., Taraskin, V. V., Radnaeva, L. D., and Zhang, F. (2020). Do Compositions of Lipid Fraction Correspond to Species Differentiation in Bupleurum L. (Apiaceae)? Plants. 9(11): 1407.
Usanmaz, S., Öztürkler, F., Helvaci, M., Turgut, A. L. A. S., Kahramanoğlu, İ., and Aşkin, M. A. (2018). Effects of periods and altitudes on the phenolic compounds and oil contents of olives, cv. ayvalik. International Journal of Agriculture Forestry and Life Sciences. 2(2): 32-39.
Vongerichten, E. and Kohler, A. (1909). Uber Petroselinsäure, eine neue Olsaure. European Journal of Inorganic Chemistry: 42(2): 1638-1639.
Winter, P. J., Magee, A. R., Phephu, N., Tilney, P. M., Downie, S. R., and van Wyk, B. E. (2008). A new generic classification for African peucedanoid species (Apiaceae). Taxon. 57(2): 347-364.
Yan, H., Zhang, S., Yang, L., Jiang, M., Xin, Y., Liao, X. ... and Lu, J. (2024). The Antitumor Effects of α-Linolenic Acid. Journal of Personalized Medicine. 14(3): 260.
Zyriax, B. C. and Windler, E. (2000). Dietary fat in the prevention of cardiovascular disease - a review. European Journal of Lipid Science and Technology. 102(5): 355-365.