بررسی تاثیر محلول¬پاشی اسید هيوميک و نانوذرات منیزیم بر خصوصیات فیزیولوژیک و عملکرد گياه دارویی استویا (Stevia rebaudiana L.)
محورهای موضوعی : گیاهان دارویی
سید محسن سید لر
1
,
حمید مظفری
2
*
,
فائزه رجب زاده
3
,
بهزاد ثانی
4
,
تورج رحیمی
5
1 - دانشجوی دکتری، گروه زراعت، دانشگاه آزاد اسلامی واحد شهرقدس، شهرقدس، ایران
2 - دانشیار، گروه زراعت، دانشگاه آزاد اسلامی واحد شهرقدس، شهرقدس، ایران
3 - دانشیار، گروه زراعت، دانشگاه آزاد اسلامی واحد شهرقدس، شهرقدس، ایران
4 - دانشیار، گروه زراعت، دانشگاه آزاد اسلامی واحد شهرقدس، شهرقدس، ایران
5 - استادیار، گروه زراعت، دانشگاه آزاد اسلامی واحد شهرقدس، شهرقدس، ایران
کلید واژه: استویا, اسید هیومیک, آنتی¬اکسیدان, کود آلی, نانواکسید منیزیم,
چکیده مقاله :
به منظور مطالعه تاثیر کاربرد اسید هیومیک و نانوذرات منیزیم بر خصوصیات فیزیولوژیک و عملکرد گیاه دارویی استویا، آزمایشی طی دو سال زراعی 1400-1399 و 1401- 1400 در مزرعه ای واقع در منطقه صفادشت انجام شد. این تحقیق به صورت آزمایش فاکتوریل در قالب طرح بلوكهاي کامل تصادفی و در سه تکرار اجرا شد. فاکتور اول شامل محلولپاشی با غلظتهای متفاوت اسید هیومیک (صفر (شاهد)، 1 و 2 گرم در لیتر) و فاکتور دوم شامل محلولپاشی با غلظتهای مختلف نانواکسید منیزیم (صفر (شاهد)، 1/0 و 2/0 گرم در لیتر) بود. نتایج حاصل از تجزیه واریانس و مقایسه میانگین داده ها صفات نشان داد که مقادیر صفات میزان آنتوسیانینها، فعالیت آنزیمهای کاتالاز، پراکسیداز و سوپراکسید دیسموتاز، قندهای محلول، کارتنوئیدها، فلاونوئیدها و عملکرد برگ تحت تاثیر محلولپاشی با اسید هیومیک و نانوذره منیزیم افزایش معنی داری یافت در حالی که مقادیر صفات مالون دیآلدئيد، نفوذپذیری غشاء و پراکسید هیدروژن تحتتاثیر کاربرد این عنصر و ترکیب اسید هیومیک، کاهش معنیداری نشان داد. نتایج نهایی نشان داد که محلولپاشی گیاه استویا با غلظت 2 گرم در لیتر اسید هیومیک و غلظت 2/0 گرم در لیتر نانوذره منیزیم، از طریق بهبود صفات فیزیولوژیک و بیوشیمیایی، موجب حصول بالاترین مقدار عملکرد برگ گیاه استویا در مقایسه با سایر تیمارها شد.
In order to study the effect of humic acid and magnesium nanoparticles on the physiological characteristics and yield of the medicinal plant, Stevia, an experiment was conducted in a field located in Safadasht region in 2021 and 2022. This research was carried out as a factorial design in a randomized complete block design with three replications. The first factor included foliar application with different concentrations of humic acid (zero (control), 1 and 2 g.L-1) and the second factor included foliar application with different concentrations of magnesium nanooxide (zero or control, 0.1 and 0.2 g.L-1). The results of the variance analysis of traits showed that the amounts of the anthocyanins, the activity of catalase, peroxidase and superoxide dismutase enzymes, soluble sugars, carotenoids, flavonoids and leaf yield increased significantly under the influence of foliar application with humic acid and magnesium nanoparticles, while the values of the saturated water deficit, malondialdehyde, membrane permeability and hydrogen peroxide decreased significantly under the influence of the application of this element and the organic composition of humic acid. The final results showed that foliar application of stevia plants with a concentration of 2 g.l-1 of humic acid and a concentration of 0.2 g.l-1 of magnesium nanoparticles, through the improvement of physiological and biochemical traits, resulted in the highest leaf yield of stevia plants.
1) Abd-ElazeemAl-Azzony, E.A-E. and AhmedEl-Moghazy, T.F. 2019. Effect of magnesium, iron and carbon dioxide on quality of Stevia rebaudiana (Bertoni) pants. International Journal of Herbal Medicine, 7(6): 16-22 .
2) Aebi, H.E. 1983. Catalase. In: Bergmeyer, H.U. Editors. Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, pp. 273-286.
3) Aprile, A., Negro, C., Sabella, E., Luvisi, A., Nicolì, F., Nutricati, E., Vergine, M., Miceli, A., Blando, F. and De Bellis, L. 2019. Antioxidant activity and anthocyanin contents in olives (cv Cellina di Nardò) during ripening and after fermentation. Antioxidant, 8(5): 1-12.
4) Ashraf, M. and Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental Experimental Botany, 59(2): 206-216.
5) Bisht, N. and Chauhan, P.S. 2020. Excessive and disproportionate use of chemicals cause. In: Larramendy, M.L., Soloneski, S. Editors. Soil contamination- Threats and sustainable solutions. London, UK: IntechOpen. p. 298.
6) Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H. and Ding, W. 2018. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against ralstonia solanacearum. Frontiers in. Microbiology, 9: 1-19.
7) Chance, B. and Maehley, A.C. 1955. Assay of catalases and peroxidases. Methods in Enzymology, 2: 764.
8) Cordeiro, F.C., Santa-Catarina, C., Silveira, V. and Souza, S.R. 2011. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Bioscience. Bioscience, Biotechnology, and Biochemistry, 75(1): 70-74.
9) Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356.
10) Fridivich, I. 1989. Superoxide dismutases: An adaptation to a paramagnetic gas. The Journal of Biological Chemistry, 264(14): 7761-7764.
11) Gasmalla, M.A.A., Yang, R., Amadou, I. and Hua, X. 2014. Nutritional composition of Stevia rebaudiana Bertoni leaf: effect of drying method. Tropical Journal of Pharmaceutical Research January, 13(1): 61-65.
12) Giannopolitis, C.N. and Ries, S.K. 1977. Superoxide Dismutases: I Occurrence in higher plants. Plant Physiology, 59(2): 309-314.
13) Hanudin, E., Wismarini, H., Hertiani, T. and Sunarminto, B.H. 2012. Effect of shading, nitrogen and magnesium fertilizer on phyllanthin and total flavonoid yield of Phyllanthus niruri in Indonesia soil. Journal of Medicinal Plants Research, 6(30): 4586-4592.
14) Huang, D-F., Wang, L-M., Wei, X-Q. and Luo, T. 2016. Effects of applying magnesium fertilizer on Chinese cabbage’s yield, nutrient elements’ uptake and soil’s fertility. 2nd Annual International Conference on Energy, Environmental & Sustainable Ecosystem Developmen, Advances in Engineering Research, 115: 405-410.
15) Jamali Jaghdani, S., Jahns, P. and Tr¨ankner, M. 2021. The impact of magnesium deficiency on photosynthesis and photoprotection in Spinacia oleracea. Plant Stress, 2(2021): 1-11.
16) Jan, J.A., Nabi G., Khan M., Ahmad S., Shah P.S., Hussain S. and Sehrish S. 2020. Foliar application of humic acid improves growth and yield of chilli (Capsicum annum L.) varieties. Pakistan Journal of Agricultural Research, 33(3): 461-472.
17) Karakurt, Y., Husnu, U., Halime, U. and Huseyin, P. 2009. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agriculturae Scandinavica Section B. Soil and Plant Science, 59: 233-237.
18) Khodamoradi, P., Amiri, J. and Dovlati, B. 2018. Effect of humic acid on some morphological and physiological characteristics of strawberry (Fragaria ananassa Duch. cv. Sabrina) under salinity stress. Pomology Research, 2(2): 109-135.
19) Khordadi Varamin, J., Fanoodi, F., Sinaki, J.M., Rezvan, SH. and Damavandi, A. 2020. Foliar application of chitosan and nano-magnesium fertilizers influence on seed yield, oil content, photosynthetic pigments, antioxidant enzyme activities of sesame (Sesamum indicum L.) under water-limited conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2228-2243.
20) Kiapour, H., Moaveni, P., Sani, B., Rajabzadeh, F. and Mozafari, H. 2020. Investigating the effect of magnesium and iron oxide nanoparticles on the levels of enzymatic and non-enzymatic antioxidants in roselle. Journal of Medicinal Plants and By-products, 9(1): 19-31.
21) Krizek, D.T., Britz, S.J. and Mirecki, R.M. 1998. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of c.v. new red fire lettuce. Physiologia Plantarum, 103(1): 1-7.
22) Le, T.M., Hong Phung, T.L. and Cao, PH.B. 2020. Effect of magnesium on growth, fruit yield and some biochemical indices of hydroponic black tomato. Asian Journal of Plant Science, 19(3): 273-278.
23) Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382.
24) Merlol, L., Ghisil, R., Passeral, N. and Rascio, C. 1991. Effects of humic substances on carbohydrate metabolism of maize leaves. Canadian Journal of Plant Science, 71: 419-425.
25) Miao, B.H., Han, X.G. and Zhang, W.H. 2010. The ameliorative effect of silicon on soybean seedling grown in potassium deficient medium. Annals of Botany, 105(6): 967-973.
26) Miri Nargesi, M., Sedaghathoor, S. and Hashemabadi, D. 2022. Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi journal of biological sciences, 29(5): 3473-3481.
27) Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9): 405-410.
28) Noroozisharaf, A-R. and Kaviani, M. 2018. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3): 423-431.
29) Ozgur Uzilday, R., Uzilday, B., Yalcinkaya, T. and Turkan, I. 2017. Mg deficiency changes the isoenzyme pattern of reactive oxygen species-related enzymes and regulates NADPH-oxidase-mediated ROS signaling in cotton. Turkish Journal of Biology, 41: 868-880.
30) Pol, J., Ostra, E.V., Karasek, P., Roth, M., Benesova, K., Kotlarlkova, P. and Caslavsky, J. 2007. Comparison of two different solvents employed for pressurised fluid extraction of stevioside from Stevia rebaudiana: methanol versus water. Analytical and Bioanalytical Chemistry, 388(8): 1847−1857.
31) Popham, P.L. and Novacky, A. 1991. Use of dimethyl sulfoxide to detect hydroxyl radical during bacteria-induced hypersensitive reaction. Plant Physiology, 96(4): 1157-1160.
32) Sairam, R.K. and Srivastava, G.C. 2001. Water stress tolerance of wheat Triticum aestivum L.: Variation in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotype. Journal Agronomy and Crop Science, 186: 63-70.
33) Sana, N., Bajwam, R., Javaidm, A. and Shoaib, A. 2017. Effect of biopower application on weed growth and yield of rice. Planta Daninha, 35(e017164872): 1-11.
34) Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012(1): 1- 26.
35) Siddiqui, M.H., Alamri, S.A., Al-Khaishany, M.Y.Y., Al-Qutami, M.A., Ali, H.M., Mohamed, H., Al-Whaibi, M.H., Al-Wahibi, M.S. and Alharby, H.F. 2018. Mitigation of adverse effects of heat stress on Vicia faba by exogenous application of magnesium. Saudi Journal of Biological Sciences, 25(7): 1393-1401.
36) Vogt, T. 2010. Phenylpropanoid biosynthesis. Molecular Plant, 3(1): 2-20.
37) Wanger, G.J. 1979. Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids, and anthocyanis in protoplasts. Plant Physiology, 64(1): 88-93.
38) Youssef, M.A., Yousef, A.F., Ali, M.M., Ahmed, A.I., Lamlom, S.F., Strobel W.R. and Kalaji H.M. 2021. Exogenously applied nitrogenous fertilizers and effective microorganisms improve plant growth of stevia (Stevia rebaudiana Bertoni) and soil fertility. AMB Express, 11: 1-10.
39) Zaremanesh, H., Eisvand, H.R., Akbari, N., Ismaili, A. and Feizian, M. 2021. Humic acid affects some growth parameters, chlorophyll, flavonoids, antioxidant enzymes, and essential oil profile of Satureja khuzestanica Jamzad under salinity stress. Iranian Journal of Plant Physiology, 11(3): 3683-3700.