افزایش حساسیت شب¬پره مینوز گوجه¬فرنگی Tuta absoluta به گیاه گوجه¬فرنگی تقویت¬شده با نانوذرات نقره
محورهای موضوعی : فصلنامه زیست شناسی جانوری
زهرا ریاض عبدالله الطرشه
1
,
شیما رحمانی
2
*
1 - گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: شب پره مینوز, نانوذرات نقره, گوجه فرنگی, حشره کش ,
چکیده مقاله :
شب پره مینوز گوجه فرنگی،Tuta absoluta یکی از آفات مهم گیاهان خانواده Solanaceae به ویژه گوجهفرنگی است که در صورت عدم کنترل میتواند کل محصول را از بین ببرد. از آنجایی که کاربرد مکرر حشره کشهای شیمیایی به دلیل رفتار مینوزی این حشره در دوران لاروی، بروز مقاومت و همچنین اثرات ناخواسته زیستمحیطی بعضا فاقد کارایی لازم هستند، توصیه میشود روشهای جایگزین مناسب و زیستسازگاری برای مبارزه با این آفت ارایه شود. یکی از راهکارهای مبارزه با این آفت، مقاومسازی گیاه میزبان با استفاده از ترکیبات نانوذرات نقره است. در این پژوهش، از غلظتهای 200، 400، 600 و 800 ppm ذرات نقره ( 50/39 نانومتر) استفاده شد تا ایجاد و افزایش مقاومت گیاه گوجه فرنگی به این شب پره آفت مورد آزمایش قرار گیرد. به این منظور، برخی از شاخصهای فیزیولوژیکی گیاه گوجهفرنگی اندازه گیری شد. از سوی دیگر، تعدادی از ویژگیهای بیولوژیکی آفت نیز از جمله تعداد تخم گذاشته شده و میزان مرگ و میر تخم و لارو مورد بررسی قرار گرفت. نتایج نشان داد با بالا رفتن غلظت نانوذرات، آنزیمهای آنتیاکسیدان پراکسیداز و سوپراکسیددیسموتاز روندی افزایشی نشان دادند. اگرچه تغییر معنیداری در دو آنزیم پلیفنلاکسیداز و کاتالاز دیده نشد. همچنین، با افزایش غلظت نانوذرات نقره میزان فنل کل افزایش و میزان آنتوسیانین کاهش معنیداری پیدا کرد (05/0 >P) اما در میزان کربوهیدرات کل تغییری ایجاد نشد. بعلاوه، در گروه تیمار شده با نانوذرات نقره، به طور معنیداری تعداد تخمهای کمتری گذاشته شد، و درصد میانگین مرگ جنین و لاروها کمتر بود (05/0 >P). بعلاوه، این اثرگذاری از سوی دو غلظت بالاتر (600 و 800 ppm) بیشتر برآورد شد. بدین ترتیب، استفاده از نانوذرات نقره میتواند در مقاومسازی گیاه گوجهفرنگی بهT. absoluta نقش داشته باشد و امکان دارد در آینده بتوان از آن به عنوان روشی ایمن و جایگزینی برای حشرهکشهای رایج استفاده کرد.
The tomato leaf miner, Tuta absoluta, is a significant pest of plants in the Solanaceae family, particularly tomatoes, and can destroy the entire crop if not managed properly. Because the frequent use of chemical insecticides is sometimes ineffective due to the concealed life of the insect during the larval stage, the potential for resistance, and undesirable environmental effects, it is advised to explore suitable and biocompatible alternative methods to combat this pest. One strategy to address this issue involves enhancing the host plant's resistance using silver nanoparticles. In this study, concentrations of 200, 400, 600, and 800 ppm of silver particles (39. 50 nm) were employed to develop and bolster the resistance of tomato plants against this moth pest. For this purpose, several physiological indicators of tomato plants were assessed. Additionally, several biological characteristics of the pest were examined, including the number of eggs laid and the mortality rates of eggs and larvae. The results indicated that as the concentration of nanoparticles increased, the antioxidant enzymes peroxidase and superoxide dismutase exhibited an upward trend. However, no significant changes were observed in the enzymes polyphenol oxidase and catalase. Furthermore, with increasing concentrations of silver nanoparticles, the total phenol content increased while the anthocyanin content decreased significantly (P < 0.05); however, no changes were noted in the total carbohydrate content. Moreover, significantly fewer eggs were laid in the group treated with silver nanoparticles, and the mean percentage of embryonic and larval mortality was lower (P < 0.05). This effect was particularly pronounced at the higher concentrations of 600 and 800 ppm. Hence, the application of silver nanoparticles can contribute to making tomato plants resistant to T. absoluta, and it could likely be used in the future as a safe alternative to conventional insecticides.
اشتری، ص. (1397) کنترل شب پره مینوز گوجه فرنگی با استفاده از سموم شیمیایی و حشرات مفید. مجله ترویجی سبزیجات گلخانه ای، 1(1): 33-39.
طوسی، م. (1403) ارزیابی ارتباط تولید و مزیت صادراتی در بازار جهانی گوجه¬فرنگی و ایران. اقتصاد کشاورزی، 18(2): 116-93.
Abd El-Rahman S.F., Khalil S.S.H., Ahmed S.S. 2019. Laboratory evaluation of photosensitizers against cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Academic Journal of Entomology, 12(3): 61–69.
Abouelkassem S., El-Borady O. M., Mohamed M.B. 2017. Towards using of new and safety nanomaterials against tomato leafminer, Tuta absoluta (Mayrick) in tomato under field conditions. Journal of Nanomedicine & Nanotechnology, 8: 13-14.
Achari G., Kowshik M. 2018. Recent developments on nanotechnology in agriculture: plant mineral nutrition, health, and interactions with soil microflora. Journal of Agricultural and Food Chemistry, 66: 8647–8661.
Ahmadi K., Ebadzadeh H., Hatami F., Ebadshah H., Kazemian A. 2020. Agricultural statistics, ministry of jihad agriculture, deputy of planning and economy. Bureau of Statistics and Information Technology. 97 pages (In Farsi).
Ahmed S.S., Abd El-Rahman S.F., Abdel Kader M.H. 2018. Field evaluation of some photosensitizers and nanocomposites against cotton leaf worm, Spodoptera littoralis (Bois.) (Lepidoptera: Noctuidae). Middle East Journal of Applied Sciences, 8(4): 1471-1479.
Ansari M., Ahmed S., Abbasi A., Hamad N.A., Ali H.M., Khan M.T., Haq I.U., Zaman, Q.U. 2023. Green synthesized silver nanoparticles: a novel approach for the enhanced growth and yield of tomato against early blight disease. Microorganisms, 11(4): 886.
Arnott A., Galagedara L., Thomas R., Cheema M., Sobze J.M. 2021. The potential of rock dust nanoparticles to improve seed germination and seedling vigor of native species: A review. Science of The Total Environment, 775: 145139.
Arvind R.S., Raja S.K. 2017. Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—An eco-friendly approach of insect pest control. Journal of Environmental Chemical Engineering, 5: 453–467.
Ashraf H., Batool T., Anjum T., Illyas A., Li G., Naseem S., Riaz, S. 2022. Antifungal potential of green synthesized magnetite nanoparticles black coffee–magnetite nanoparticles against wilt infection by ameliorating enzymatic activity and gene expression in Solanum lycopersicum L. Frontiers in Microbiology, 13: 754292.
Azeez L., Adebisi S.A., Adetoro R.O., Oyedeji A.O., Agbaje W.B., Olabode O.A. 2022. Foliar application of silver nanoparticles differentially intervenes remediation statuses and oxidative stress indicators in Abelmoschus esculentus planted on gold-mined soil. International Journal of Phytoremediation, 24(4): 384-393.
Bahirae F., Aryafar A., Jafari S. 2015. Population fluctuations of tomato leaf miner, Tuta absoluta (Meyrick) (Lep.: Gelechiidae), in Boroujerd county, Lorestan Province, Iran. Agricultural Pest Management, 2(1): 1-11 (In Farsi with English abstract).
Baniameri V., Cheraghian A. 2012. The first report and control strategies of Tuta absoluta in Iran. European and Mediterranean Plant Protection Organization Bulletin, 42: 322- 324.
Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44(1): 276-287.
Bowles P.J. 1990. Defense – related proteins in higher plants. Annual Review of Biochemistry, 59: 873 -907.
Bruna T., Maldonado-Bravo F., Jara P., Caro N. 2021. Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13): 7202.
Campos M.R., Biondi A., Adiga A., Guedes R.N.C., Desneux N. 2017. From theWestern Palaeartic region to beyond: Tuta absoluta 10 years after invading Europe. Pest Management Science, 90: 787-796.
Chance B., Maehly, A. 1995. Assay of catalase and peroxidase Pp. 764–791. Methods in enzymology Academic press New York.
Cocco A., Deliperi S., Delrio G. 2013. Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. Journal of Applied Entomology, 137: 16–28.
Conesa A., Punt P.J., Van den Honder A.M.J.J. 2002. Fungal peoxidases: Molecular aspects and applications. Journal of Biotechnology, 93: 143 -158.
Danaee E., Naderi R., Kalatejari S., Moghadam A.R.L. 2013. Evaluation the effect salicylic acid and benzyladenine on enzymic activities and longevity of gerbera cut flowers. International Research Journal of Applied and Basic Sciences, 7(5): 304-308.
Desneux N., Luna M.G., Guillemaud T., Urbaneja A. 2011. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science, 84: 403-408.
Desneux N., Wajnberg E., Wychhuys A.G., Burgio G. 2010. Biological Invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal Pest Science, 83: 197-215.
Dhindsa R.S., Matowe W. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany, 32(1): 79-91.
El-Samahy M.F.M., El-Ghobary, A.M., Khafagy I.F. 2014. Using silica nanoparticles and neemoil extract as new approaches to control Tuta absoluta (meyrick) in tomato under field conditions. International Journal of Plant & Soil Science, 3(10): 1355-1365.
Elumalai D., Hemavathi M., Deepaa C.V., Kaleena P.K. 2017. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiology and Control, 2(4): 15-26.
Flores‐López L.Z., Espinoza‐Gómez H., Somanathan R. 2019. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. Journal of Applied Toxicology, 39(1): 16-26.
Gabarra R., Arnó J., Lara L., Verdú M.J., Ribes A., Beitia F., Urbaneja A., Téllez M.D.M., Mollá O., Riudavets J. 2014. Native parasitoids associated with Tuta absoluta in the tomato production areas of the Spanish Mediterranean Coast. BioControl, 59: 45-54.
Irigoyen J.J., Einerich D.W., Sánchez‐Díaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1): 55-60.
Kar M., Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2): 315-319.
Krechemer F.S., Foerster L.A. 2019. Influence of biotic and abiotic factors on the population fluctuation of Tuta absoluta (Lepidoptera: Gelechiidae) in an organic tomato farming. International Journal of Tropical Insect Science, 40(1): 199-208.
Lange W.H., Bronson L. 1981. Insect pests of tomatoes. Annual Review of Entomology, 26: 345-371.
McDonald S., Prenzler P.D., Autolovich M., Robards, K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73: 73-84.
Naganthran A., Verasoundarapandian G., Khalid F.E., Masarudin M.J., Zulkharnain A., Nawawi N.M., Karim M., Che Abdullah C.A., Ahmad S.A. 2022. Synthesis, characterization and biomedical application of silver nanoparticles. Materials, 15(2): 427.
Nalini M., Lena M., Sumathi P., Sundaravadivelan C. 2017. Effect of phytosynthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti. Egyptian Journal of Basic and Applied Sciences, 4(3): 212-218.
Marrs K.A., Alfenito M.R., Lloyd, A.M., Walbot V. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 375(6530): 397-400.
Martínez-Cisterna D., Rubilar O., Tortella G., Chen L., Chacón-Fuentes M., Lizama M., Parra P., Bardehle L. 2024. Silver Nanoparticles as a Potent Nanopesticide: Toxic Effects and Action Mechanisms on Pest Insects of Agricultural Importance- A Review. Molecules. 29(23): 5520. https://doi.org/10.3390/molecules29235520
Meng X., Abdlli N., Wang N., Lu P., Nie Z., Dong X., Lu S., Chen K. 2017. Effects of Ag Nanoparticles on Growth and Fat Body Proteins in Silkworms (Bombyx mori). Biological Trace Element Research, 180: 327–337.
Moazzami Farida, S.H., Karamian, R., Albrectsen, B.R. 2020. Silver nanoparticle pollutants activate oxidative stress responses and rosmarinic acid accumulation in sage. Physiologia Plantarum, 170(3): 415-432.
Panda N., Khush, G.A. 1995. Host plant resistance to insects (pp. xiii+-431).
Paul A., Roychoudhury A. 2021. Go green to protect plants: repurposing the antimicrobial activity of biosynthesized silver nanoparticles to combat phytopathogens. Nanotechnology for Environmental Engineering, 6(1): 10.
Pavunraj M., Baskar K., Duraipandiyan V., Al-Dhabi N.A., Rajendran V., Benelli G. 2017. Toxicity of Ag Nanoparticles Synthesized Using Stearic Acid from Catharanthus roseus Leaf Extract Against Earias vittela and Mosquito Vectors (Culex quinquefasciatus and Aedes aegypti). Journal of Cluster Science, 28: 2477–2492.
Pereyra, P.C., and Sanchez, N.E. (2006) Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology, 35(5): 671-676.
Qian H., Peng X., Han X., Ren J., Sun L., Fu Z. 2013. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25(9): 1947-1956.
Rankic I., Zelinka R., Ridoskova A., Gagic M., Pelcova P., Huska, D. 2021. Nano/microparticles in conjunction with microalgae extract as novel insecticides against mealworm beetles, Tenebrio molitor. Scientific Reports, 11(1): 17125.
Roditakis E., Papachristos D., Roditakis. N.E. 2010. Current status of the tomato leafminer Tuta absoluta in Greece. European Plant Protection Organization Bulletin, 40: 163-166.
Sadasivam S. 1996. Biochemical methods. New age international.
Sadigh-Eteghad S., Shahi S., Mahmoudi J., Farjami A., Bazmani A., Naghili B., Dizaj S.M., Salatin S. 2022. Application of nanobased drug loading systems in the treatment of neurological infections: An updated Review. Current Pharmaceutical Design, 28: 2330–2342.
Santos T.S., de Souza C., Sanchez-Lopez E., Jain S.A., Souto E.B., Severino P., Mendonca M. 2022. Entomopathogenic fungi- mediated AgNPs: synthesis and insecticidal effect against Plutella xylostella (Lepidoptera: Plutellidae). Materials, 15: 7596.
Sayed A.M., Kim S., Behle R.W. 2017. Characterization of silver nanoparticles synthesized by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Science and Technology, 27: 1308.
Shi A., Tomczyk A., 2001. Impact of feeding of eriophyid mite Epitrimerus gibbosus (Nalepa)(Acari: Eriophyoidea) on some biochemical components of blackberry (Rubus spp.). Bulletin of the Polish Academy of Sciences. Biological Sciences, 49(1): 41-47.
Smirnoff N., Arnaud D. 2019. Hydrogen peroxide metabolism and functions in plants. New phytologist, 221(3): 1197-1214.
Subramaniam J., Murugan K., Panneerselvam C., Kovendan K., Madhiyazhagan P., Kumar P.M., Dinesh D., Chandramohan B., Suresh U., Nicoletti M., Higuchi A. 2015. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environmental Science and Pollution Research, 22: 20067-20083.
Suresh U., Murugan K., Panneerselvam C. 2017. Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiological and Molecular Plant Pathology, 101: 225–235.
Terzidis A.N., Wilcockson S., Leifert C. 2014. The tomato leaf miner (Tuta absoluta): Conventional pest problem, organic management solution, Organic Agriculture, 4: 43-61.
Tymoszuk A. 2021. Silver nanoparticles effects on in vitro germination, growth, and biochemical activity of tomato, radish, and kale seedlings. Materials, 14(18): 5340.
Valderrama B., Ayala M., Vasques-Duhalt R. 2002. Suicide inactivation of peroxidase and the challenge of engineering more robust enzymes. Chemistry & Biology, 9: 555 -565.
Wagner G.J. 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology, 64(1): 88-93.
Zappala L., Biondi A., Alma A., ALJboory I.J., Arno J., Bayram A., Chailleux A., El-Arnaouty A., Gerling D., Guenaoui Y., ShaltielHarpaz L., Siscaro G., Stavrinides M., Tavella L., Vercher Aznar R., Urbaneja A., Desneux N. 2013. Natural enemies of the South American moth, Tuta absoluta in Europe, North Africa and Middle East and their potential use in pest control strategies. Journal of Pest Science, 86: 635-647.
Zhao L., Bai T., Wei H., Gardea-Torresdey J.L., Keller A., White J.C. 2022. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nature Food, 3(10): 829-836.