فهرست مقالات Galib Hashmi


  • مقاله

    1 - Electrical and optical parameter-based numerical simulation of high-performance CdTe, CIGS, and CZTS solar cells
    Journal of Theoretical and Applied Physics , شماره 1 , سال 17 , تابستان 2023
    The market for thin-film solar cells is gradually increasing and is expected to grow to 27.11 billion dollars by 2030. The most extensively researched thin film technologies based on simulation right now include solar cells made of Cadmium Telluride (CdTe), Copper Indiu چکیده کامل
    The market for thin-film solar cells is gradually increasing and is expected to grow to 27.11 billion dollars by 2030. The most extensively researched thin film technologies based on simulation right now include solar cells made of Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), and Copper Zinc Tin Sulfide (CZTS). This work aims to use free software that does accurate simulation using the electrical and optical parameters (absorption coefficients) published in the literature. Moreover, to optimize efficiency, numerical simulation of all the solar cells has been done for different buffer layers (Cadmium Sulfide (CdS), Zinc Sulfide (ZnS)) and transparent conductive oxide (TCO) layers (Aluminum Zinc Oxide (AZO), and Indium Tin Oxide (ITO)). To assess the performance of the solar cells, changes have been made in the thickness of TCO layers and the alteration of doping concentrations of buffer layers and absorber layers. The simulation shows that 0.1 μm is the best TCO thickness. Furthermore, the AZO layer output outperforms the ITO layer in the simulation. It has also been investigated how employing a zinc telluride (ZnTe)-based back-surface reflector (BSR) layer will affect the results. This work includes representations of all the solar cell's open circuit voltage (Voc), short circuit current density (Jsc), maximum power (Pm), fill factor (FF), and photovoltaic efficiencies. The simulation's findings could be useful in the creation and comprehension of high-efficiency thin film solar cells. پرونده مقاله

  • مقاله

    2 - Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells
    Journal of Theoretical and Applied Physics , شماره 1 , سال 0 , پاییز 2018
    AbstractIn this work, the impact of six different anti-reflection coating (ARC) layers has been investigated using PC1D simulation software. Simulation shows that the range of 500–700 nm would be suitable for designing an ARC. Designing a single-layer silicon nitride (S چکیده کامل
    AbstractIn this work, the impact of six different anti-reflection coating (ARC) layers has been investigated using PC1D simulation software. Simulation shows that the range of 500–700 nm would be suitable for designing an ARC. Designing a single-layer silicon nitride (Si3N4) ARC for 600 nm wavelength and with a thickness of 74.257 nm, a silicon solar cell with 20.35% efficiency has been simulated. Very closely followed by a 20.34% efficient silicon solar cell with 74.87 nm thick zinc oxide (ZnO) ARC layer. Significant increase in efficiency has been observed by applying ARC in respect to not applying any kind of ARC. After efficient solar cell modeling, optimum efficiency of 20.67% is being achieved by using SiO2 surface passivation and Si3N4 ARC layer. The effects on voltage, current, photovoltaic efficiency, reflectivity and external quantum efficiency due to ARCs are also represented in this work. پرونده مقاله