فهرست مقالات Akram Jahanbakhshi


  • مقاله

    1 - Numerical Study on Forced Convection of Slip Flow in A Microchannel with Smooth and Sinusoidal Walls
    International Journal of Advanced Design and Manufacturing Technology , شماره 57 , سال 14 , پاییز 2024
    The micro-scale equipment has many advantages, including high thermal performance, high surface-to-volume ratio in heat transfer, small size, low weight, low required fluid and high design flexibility. In this study, fluid flow inside a microchannel is modeled under the چکیده کامل
    The micro-scale equipment has many advantages, including high thermal performance, high surface-to-volume ratio in heat transfer, small size, low weight, low required fluid and high design flexibility. In this study, fluid flow inside a microchannel is modeled under the assumption of laminar, incompressible, and two-dimensional flow under symmetric boundary conditions. The slip boundary condition is applied to the walls and the flow in the channel output is assumed to be fully developed. The effect of sinusoidal wall with the domain of 0.1 on the hydrodynamic and thermal behavior of the fluid is investigated and the results are compared with the results of smooth wall. The results show that for a constant Reynolds number, the maximum velocity decreases in the microchannel center by increasing the slip coefficient. Also, the comparison between the results of the wavy-wall microchannel and the microchannel with a smooth wall indicates that the heat transfer in the smooth microchannel is less than that in wavy-wall one. Considering the boundary conditions, the thermal behavior of the fluid is approximately the same for two cases in which both walls are sinusoidal and the only upper wall is sinusoidal. پرونده مقاله

  • مقاله

    2 - Heat Transfer of Wavy Microchannel Heat Sink with Microtube and Ag/Water-Ethylene Glycol Hybrid Nanofluid
    International Journal of Advanced Design and Manufacturing Technology , شماره 61 , سال 15 , پاییز 2024
    In the present study, novel channel geometries in a wavy channel heat sink (HS) are investigated using ANSYS-FLUENT software. The Ag/water-ethylene glycol (50%) nanofluid is selected for cooling the CPU in this HS. The second-order upwind method is employed to discretiz چکیده کامل
    In the present study, novel channel geometries in a wavy channel heat sink (HS) are investigated using ANSYS-FLUENT software. The Ag/water-ethylene glycol (50%) nanofluid is selected for cooling the CPU in this HS. The second-order upwind method is employed to discretize the momentum Equation and the SIMPLEC algorithm is employed for coupling velocity and pressure fields. Comparison of the two HSs with and without microtube shows that the presence of the microtube increases the uniformity of the CPU surface temperature distribution and decreases the mean surface temperature of the CPU (TCPU-Mean). However, the pumping power consumption of the system increases about 10 times. The results also demonstrate that the addition of nanoparticles results in intensification in the Performance Evaluation Criterion (PEC) of the system and up to 30%, especially at high Reynolds numbers. پرونده مقاله