فهرست مقالات Majid Hamzavi


  • مقاله

    1 - Exact solutions of Feinberg-Horodecki equation for time-dependent Deng-Fan molecular potential
    Journal of Theoretical and Applied Physics , شماره 1 , سال 0 , زمستان 2013
    AbstractThe exact bound state solutions of the Feinberg-Horodecki equation with the rotating time-dependent Deng-Fan oscillator potential are presented within the framework of the generalized parametric Nikiforov-Uvarov method. It is shown that the solutions can be expr چکیده کامل
    AbstractThe exact bound state solutions of the Feinberg-Horodecki equation with the rotating time-dependent Deng-Fan oscillator potential are presented within the framework of the generalized parametric Nikiforov-Uvarov method. It is shown that the solutions can be expressed in terms of Jacobi polynomials or the generalized hypergeometric functions. The energy eigenvalues and the corresponding wave functions are obtained in closed forms. پرونده مقاله

  • مقاله

    2 - A new Coulomb ring-shaped potential via generalized parametric Nikiforov-Uvarov method
    Journal of Theoretical and Applied Physics , شماره 1 , سال 0 , زمستان 2013
    AbstractIn this paper, the Schrödinger equation is analytically solved for the Coulomb potential with a novel angle-dependent part. The generalized parametric Nikiforov-Uvarov method is used to obtain energy eigenvalues and corresponding eigenfunctions. We presented the چکیده کامل
    AbstractIn this paper, the Schrödinger equation is analytically solved for the Coulomb potential with a novel angle-dependent part. The generalized parametric Nikiforov-Uvarov method is used to obtain energy eigenvalues and corresponding eigenfunctions. We presented the effect of the angle-dependent part on radial solutions and some special cases are also discussed. پرونده مقاله

  • مقاله

    3 - Shifted Tietz–Wei oscillator for simulating the atomic interaction in diatomic molecules
    Journal of Theoretical and Applied Physics , شماره 1 , سال 0 , تابستان 2015
    AbstractThe shifted Tietz–Wei (sTW) oscillator is as good as traditional Morse potential in simulating the atomic interaction in diatomic molecules. By using the Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the ra چکیده کامل
    AbstractThe shifted Tietz–Wei (sTW) oscillator is as good as traditional Morse potential in simulating the atomic interaction in diatomic molecules. By using the Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this typical molecular model via the exact quantization rule (EQR). The energy spectrum for a set of diatomic molecules (NOa4Πidocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( a^4Pi _i ight) $$end{document}, NOB2Πrdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( B^2Pi _r ight) $$end{document}, NOL′2ϕdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( L'^2phi ight) $$end{document}, NOb4Σ-documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( b^4Sigma ^{-} ight) $$end{document}, IClX1Σg+documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m ICl}left( X^1Sigma _g^{+} ight) $$end{document}, IClA3Π1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m ICl}left( A^3Pi _1 ight) $$end{document} and IClA′3Π2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m ICl}left( A'^3Pi _2 ight) $$end{document} for arbitrary values of ndocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$n$$end{document} and ℓdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$ell $$end{document} quantum numbers are obtained. For the sake of completeness, we study the corresponding wavefunctions using the formula method. پرونده مقاله