فهرست مقالات A Sur


  • مقاله

    1 - Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties
    Journal of Solid Mechanics , شماره 1 , سال 6 , زمستان 2014
    In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varyin چکیده کامل
    In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi models, in which the thermophysical properties are temperature dependent. The governing equations are expressed in Laplace-Fourier double transform domain and solved in that domain. Then the inversion of the Fourier transform is carried out by using residual calculus, where poles of the integrand are obtained numerically in complex domain by using Laguerre’s method and the inversion of Laplace transform is done numerically using a method based on Fourier series expansion technique. The numerical estimates of the thermal displacement, temperature and thermal stress are obtained for a hypothetical material. Finally, the obtained results are presented graphically to show the effect of non-local fractional parameter on thermal displacement, temperature and thermal stress. A comparison of the results for different theories (three-phase-lag model, GN model II, GN model III) is presented and the effect of non-homogeneity is also shown. The results, corresponding to the cases, when the material properties are temperature independent, agree with the results of the existing literature. پرونده مقاله

  • مقاله

    2 - Thermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects
    Journal of Solid Mechanics , شماره 5 , سال 7 , پاییز 2015
    In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically چکیده کامل
    In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts thermoelasticity without energy dissipation (TEWOED) and with energy dissipation (TEWED)) are employed to study the thermo-mechanical coupling, thermal and mechanical relaxation effects. In the absence of mechanical relaxations (viscous effect), the results for various generalized theories of thermoelasticity may be obtained as particular cases. The governing equations are expressed in Laplace-Fourier double transform domain. The inversion of the Fourier transform is carried out using residual calculus, where the poles of the integrand are obtained numerically in complex domain by using Laguerre's method and the inversion of the Laplace transform is done numerically using a method based on Fourier series expansion technique. Some comparisons have been shown in the form of the graphical representations to estimate the effect of the non-local fractional parameter and the effect of viscosity is also shown. پرونده مقاله