فهرست مقالات Ali Shafyei


  • مقاله

    1 - Effect of Ni-P electroless coating and heat treatment on tribological and corrosion properties of copper substrate
    Journal of Advanced Materials and Processing , شماره 5 , سال 6 , پاییز 2018
    Copper is relatively soft metal and its wear and corrosion are considered to be a major factors of degradation of this metal. For this reason, when the higher wear and corrosion properties are needed, surface properties should be improved with different surface treatmen چکیده کامل
    Copper is relatively soft metal and its wear and corrosion are considered to be a major factors of degradation of this metal. For this reason, when the higher wear and corrosion properties are needed, surface properties should be improved with different surface treatments. One of these methods is the applying of Ni-P electroless coating due to good mechanical properties, suitable corrosion resistance and its ability of heat treatment on Cu. In this research after the surface preparation of Cu, which included grinding, degreasing and surface activation, the specimens were dipped into commercial electroless nickel bath (SLOTONIP 70A) for 60 minutes. SEM images and the results of the EDS test confirmed the formation of Ni-P electroless coating (with 10.83 wt. % phosphorus) with a spherical structure. Applying the heat treatment increased the hardness from 495 to 880 Vickers. XRD results showed this hardening is due to the formation of Ni crystal and Ni3P phases at this temperature in the coating. The study of wear resistance and corrosion property of coatings was also done using pin-on test and polarization tests, respectively. The results showed that the heat treatment improved the wear resistance of the coating, and the weight loss in the presence of the heat treated coating reduced to 76% due to increasing hardness and roughness of the coating by performing heat treatment. پرونده مقاله

  • مقاله

    2 - Fabrication of the Ordered Nanocells of Anodic Aluminum Oxide and the Generation of Zn-Mn Ferrite Phase within Them
    Journal of Advanced Materials and Processing , شماره 2 , سال 7 , بهار 2019
    Different ceramic coatings can be fabricated on aluminum alloys by the anodizing process. In this process, the nanocells can grow directly from the bottom toward the surface of the coating layer. The ordered porous structure of the anodic aluminum oxide (AAO) layer is a چکیده کامل
    Different ceramic coatings can be fabricated on aluminum alloys by the anodizing process. In this process, the nanocells can grow directly from the bottom toward the surface of the coating layer. The ordered porous structure of the anodic aluminum oxide (AAO) layer is a very suitable template for the growth of magnetic nanowires. At this study, one- and two-step anodizing processes were conducted to fabricate the oxide layer in an appropriate acidic electrolyte at three different temperatures (0, -5, -10 ⁰C) and three different voltages (20, 27, 35 V) for 50 min on a 7075 aluminium alloy (7075 AA). The results showed that the samples’ thickness increased with increasing the voltage and decreasing the temperature. The microhardness of samples under different voltages increased with decreasing the temperature. Field emission scanning electron microscopy (FESEM) images were taken from the back and cross-sections of nanocells. The results indicated that the samples which were anodized by the two-step process at -10 ⁰C and 35 V had yielded the best order. Afterward, Zn-Mn ferrite nanowires were produced by electrochemical deposition within the nanocells. X-ray diffraction (XRD) confirmed the formation of the Zn-Mn phase, and FESEM images showed the bulk morphology of nanowires with an appropriate saturation magnetization of about 63.64 emu/g. پرونده مقاله