فهرست مقالات masoud afrand


  • مقاله

    1 - Flow simulation of gallium in a cylindrical annulus in the presence of a magnetic field for improving the casting process
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , شماره 4 , سال 9 , بهار 2016
    Free convection flow in an enclosure filled with a congealing melt leads to the product with a nonuniform structure involving large grains. The convective flows are decreased by applying an appropriate magnetic field, obtaining uniform and small grain structures. In thi چکیده کامل
    Free convection flow in an enclosure filled with a congealing melt leads to the product with a nonuniform structure involving large grains. The convective flows are decreased by applying an appropriate magnetic field, obtaining uniform and small grain structures. In this work, using the finite volume method, we investigated the application of a magnetic field to the convective heat transfer and temperature fields in steady and laminar flows of melted gallium in an annulus between two horizontal cylinders. The inner and outer walls of the annulus are hot and cold, respectively. Moreover, the effect of the magnetic field on the flow and temperature distribution has been investigated. The influence of the variation of other parameters including the Rayleigh number and the angle of the magnetic field on the flow and temperature field also have been studied. It has been revealed that on changing the field angle to the horizon, the Nusselt number (Nu) is increased, which is of importance in a specific range of Hartmann numbers. Also with increasing the Rayleigh number, the change in Nu with the magnetic field intensity does not occur. پرونده مقاله

  • مقاله

    2 - An experimental investigation on effect of hybrid solid MWCNTs and MgO on thermal conductivity of ethylene glycol
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , شماره 5 , سال 9 , تابستان 2016
    In recent decade, the new advanced nanofluids, composed from various particles, have attracted the attention of researchers. This class of nanofluids, which can be prepared by suspending several types (two or more than two) of nanoparticles in base fluid, is termed as h چکیده کامل
    In recent decade, the new advanced nanofluids, composed from various particles, have attracted the attention of researchers. This class of nanofluids, which can be prepared by suspending several types (two or more than two) of nanoparticles in base fluid, is termed as hybrid nanofluids. In this work, an experimental investigation on the effects of temperature and concentration of nanoparticles on the thermal conductivity of MgO-MWCNT/EG hybrid nanofluid is presented. The experiments performed at temperatures ranging from 25oC to 50oC and solid volume fraction range of 0 to 0.6%. The measurements revealed that the thermal conductivity of nanofluids enhances up to 23.3% with increase in concentration of nanoparticles and temperature. Moreover, efforts were made to provide an accurate correlation for estimating the thermal conductivity at various temperatures and concentrations. Deviation analysis of the thermal conductivity ratio was performed. The comparison between experimental results and correlations outputs showed a maximum deviation margin of 0.95%, which is an acceptable accuracy for an empirical correlation. پرونده مقاله

  • مقاله

    3 - Optimization of the parameters of low-carbon steel (EN10130) welding using friction stir welding method
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , شماره 1 , سال 9 , پاییز 2017
    Friction-stir welding process is a novel method of solid state welding, which produces heat due to friction between the pin, the shoulder and the workpiece. This heat causes a paste area. Shoulder pressure and pin spin cause edges integration and lead to welding. In thi چکیده کامل
    Friction-stir welding process is a novel method of solid state welding, which produces heat due to friction between the pin, the shoulder and the workpiece. This heat causes a paste area. Shoulder pressure and pin spin cause edges integration and lead to welding. In this study, firstly, the feasibility of welding of steel sheet (EN10130) with a thickness of 1.5mm has been tested by 58 experiments. After making perfect welds, the ranges of 500-1000 RPM and 30-160 mm/min were selected as the suitable upper and lower levels, respectively, for rotational speed and linear speed. To achieve a maximum tensile strength, 29 tests were designed by using the Box-Benken method considering specified levels of the parameters. Then, the response surface methodology was used for optimization of the parameters. Results showed that the optimal outputs and experimental data were in good agreement, which indicate the adequacy of the design of experiments and optimization predict results. Micro-hardness tests, metallography and normal tensile test were carried out on three series of plates produced with the most appropriate tensile strength and elongation. Results showed that heat-affected zone weaked the sheet of advancing side compared to other welding zones. پرونده مقاله