فهرست مقالات Wega Trisunaryanti


  • مقاله

    1 - Synthesis and Catalytic Performance of Ni/Silica Pillared Clay on HDPE Plastic Hydrocracking to Produce Liquid Hydrocarbons as Fuel
    Iranian Journal of Catalysis , شماره 2 , سال 13 , بهار 2023
    Synthesis of Ni/SiPILC (Silica Pillared Clay) catalyst based on light fraction clay for hydrocracking of High-density Polyethylene (HDPE) plastics into liquid fuels has been carried out. The SiPILC was synthesized using CTAB and TEOS by varying the TEOS/clay mole ratio. چکیده کامل
    Synthesis of Ni/SiPILC (Silica Pillared Clay) catalyst based on light fraction clay for hydrocracking of High-density Polyethylene (HDPE) plastics into liquid fuels has been carried out. The SiPILC was synthesized using CTAB and TEOS by varying the TEOS/clay mole ratio. The Ni metal was impregnated on the SiPILC with a variation of 2, 4, 6, and 8 wt% of Ni. Hydrocracking of HDPE plastic was carried out using catalysts in a semi-batch stainless steel reactor. The liquid cracking product was analyzed using GC-MS. The results showed that the clay consisted of Montmorillonite, Cristoballite, and Quartz minerals. The highest specific surface area of 571 m2/g was showed by the SiPILC treated by TEOS/clay mole ratio of 60. Ni 2%/SiPILC achieved the best performance catalyst with the highest acidity of 1.327 mmol/g that produced a liquid fraction of 45.50% (gasoline 55.03 % and diesel 44.96 %) at hydrocracking temperature 450 oC for 1.5 h. The Ni 2% /SiPILC catalyst still performed well after the fifth hydrocracking run, producing a liquid fraction of 41.08 %. پرونده مقاله

  • مقاله

    2 - Synthesis of SO4/ZrO2 Catalyst and its Application in the Conversion of Ethanol to Diethyl Ether
    Iranian Journal of Catalysis , شماره 5 , سال 12 , پاییز 2022
    SO4/ZrO2 heterogeneous acid catalyst was prepared by wet impregnation method from ZrO2 precursor involved variations in H2SO4 concentration (0.5; 1.0; 1.5 M) and calcination temperature (400, 500, 600 ℃) to yield catalyst with the highest acidity value. The catalysts pr چکیده کامل
    SO4/ZrO2 heterogeneous acid catalyst was prepared by wet impregnation method from ZrO2 precursor involved variations in H2SO4 concentration (0.5; 1.0; 1.5 M) and calcination temperature (400, 500, 600 ℃) to yield catalyst with the highest acidity value. The catalysts produced were characterized using Fourier Transform Infrared (FTIR) spectrometer, X-Ray Diffractometer (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), Thermogravimetry and Differential Scanning Calorimeter (TGA-DSC), Gas Sorption Analyzer (GSA), and acidity test using the gravimetric method with ammonia vapor. The catalyst used to observe activity and selectivity in the dehydration reaction of ethanol to diethyl ether (DEE) was SO4/ZrO2 catalyst with the highest total acidity. The liquid product from the dehydration of ethanol was analyzed using Gas Chromatography (GC). The ZS‐1.5‐500 catalyst showed the best activity and selectivity in the dehydration reaction of ethanol to DEE at a temperature of 225 ℃, yielding 49.85% (w/w) ethanol conversion and a 1.62% DEE selectivity. پرونده مقاله

  • مقاله

    3 - Performance of Ni, Pt, and Pd Monometal and Ni-Pt Bimetal onto Activated Carbon for Hydrocracking of Castor Oil
    Iranian Journal of Catalysis , شماره 5 , سال 13 , پاییز 2023
    The development of high-performance hydrotreating catalysts has been a challenging pursuit within the catalyst research field. In this study, activated carbon was synthesized chemically, utilizing oxygen gas as the activator and Merbau wood as the precursor. Subsequentl چکیده کامل
    The development of high-performance hydrotreating catalysts has been a challenging pursuit within the catalyst research field. In this study, activated carbon was synthesized chemically, utilizing oxygen gas as the activator and Merbau wood as the precursor. Subsequently, the activated carbon was impregnated with both mono (Ni, Pt, Pd) and bimetallic (NiPt) species. Physical activation employing oxygen gas was employed in the preparation of the activated carbon. Notably, the optimum activation temperature using oxygen gas was identified at 350°C, aligning with the peak iodine value of 3989.7 mg/g. Subsequently, the activated carbon served as a highly efficient support material for the hydrocracking of castor oil. Among the investigated catalysts, the NiPt/AC catalyst emerged as the most promising, achieving a remarkable liquid fraction conversion of 88.73 wt%. However, it is crucial to acknowledge that the NiPt/AC catalyst exhibited limitations in terms of stability, experiencing sintering and performance degradation after only three usage cycles. پرونده مقاله