انتخاب گرههای میانی قابلاعتماد برای ارسال پیامهای بلادرنگ در شبکه خودرویی
محورهای موضوعی : انرژی های تجدیدپذیریاسر تاج 1 , بهادر بخشی سراسکانرود 2 , حسام زندحسامی 3
1 - دانشکده مدیریت و اقتصاد- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده مهندسی کامپیوتر- دانشگاه صنعتی امیرکبیر، تهران، ایران
3 - دانشکده مدیریت و اقتصاد- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: قابلیت اطمینان, شبکه خودرویی, مسیریابی مطمئن, مسیریابی بلادرنگ, سیستمهای حمل و نقل هوشمند,
چکیده مقاله :
یکی از اهداف سیستم های حمل و نقل هوشمند، بهبود ایمنی و افزایش کیفیت سرویس در سفرهای جاده ای است. انتقال پیام در شرایط بحرانی، با حداقل تاخیر و به صورت بلادرنگ از ضروریات تامین سلامت و امنیت شهروندان در سفرهای جاده ای است. تغییرات مکرر توپولوژی، کارکرد برنامه های ایمنی را با چالش های اساسی روبرو می کند و احتمال ارسال پیام های بحرانی را در زمان واقعی کاهش می دهد. در این پژوهش، الگوریتم مسیریابی انتخاب گره رله قابل اعتماد برای پیام رسانی بلادرنگ (RRRM)، با هدف افزایش قابلیت اطمینان برای ارسال پیام های بلادرنگ در شبکه های خودرویی پیشنهاد شده است و برای تسریع ارسال اطلاعات، با معرفی سه شاخص برای انتخاب خودروهای میانی با عنوان سابقه تکرار حضور در مسیر، مطابقت با میانگین هارمونیک سرعت همسایگان و بیشترین همسایگان قابل اعتماد، خودروهای مسیر امتیازدهی می شوند و شایسته ترین خودروها، به عنوان اعضای مسیر انتخاب می شوند. در RRRM با سنجش تطابق زمانی حضور قبلی خودروها در مسیر کنونی و پایداری ارتباط آنها با خودروهای همسایه، بر افزایش پایداری مسیر تاکید می شود و با جلوگیری از انتخاب وسایل- نقلیه نامطمئن به عنوان رله، از شکست مسیر و افزایش تاخیر و همچنین عدم ارسال پیام های بحرانی به مقصد جلوگیری می شود. شبیه سازی گسترده با سناریوهای متعدد در محیط NS-3 و سومو، بیانگر برتری روش RRRM در کاهش معیارهای شکست-مسیر، میانگین تاخیر و سربار کنترلی و همچنین افزایش نرخ تحویل بسته ها در محیط های شهری و بزرگ راهی است.
One of the intelligent transportation systems' goals is to improve safety and increase the quality of service on road journeys. Transmitting the message in critical situations with minimal delay and on time is essential for ensuring the health and safety of citizens on road trips. Frequent topological changes pose significant challenges to the operation of safety programs and reduce the probability of sending critical messages in real-time. This article proposes the reliable relay node selection to real-time messaging (RRRM) routing algorithm to increase the reliability of sending real-time messages in vehicular networks. To expedite the transmission of information, by introducing three indicators for selecting intermediate vehicles entitled "Record of vehicle displacement", "Similarity of vehicle velocity with the velocity average of neighbor vehicles", and "Amount of trusty adjacent vehicles", the route vehicles are scored. The worthiest vehicles are selected as members of the route. RRRM measures the temporal conformity of the vehicles' previous presence in the current route and the stability of their connection with neighboring vehicles. It avoids route failure, increased delays, and failure to send critical messages to the destination by preventing the selection of unreliable vehicles as relays. Extensive simulations with multiple scenarios in the NS-3 and SUMO demonstrate the superiority of the RRRM in reducing route-failure, mean latency, and control overload, as well as increasing packet delivery rates in urban and highway environments.
[1] X. Wang, Z. Ning, X. Hu, E. Ngai, L. Wang, B. Hu, R. Kwok, "A city-wide real-time traffic management system: Enabling crowdsensing in social internet of vehicles", IEEE Communications Magazine, vol. 56, no. 9, pp. 19–25, Sept. 2018 (doi: 10.1109/MCOM.2018.1701065).
[2] S. Boussoufa-Lahlah, F. Semchedine, L. Bouallouche-Medjkoune, "Geographic routing protocols for Vehicular Ad hoc networks (VANETs): A survey", Vehicular Communications, vol. 11, pp. 20–31, Jan. 2018 (doi: 10.1016/j.vehcom.2018.01.006).
[3] M. Chen, Y. Tian, G. Fortino, J. Zhang, I. Humar, "Cognitive internet of vehicles", Computer Communications, vol. 120, pp. 58–70, May 2018 (doi: 10.1016/j.comcom.2018.02.006).
[4] L. Yao, J. Wang, X. Wang, A. Chen, Y. Wang, "V2X Routing in a VANET based on the hidden markov model", IEEE Trans. on Intelligent Transportation Systems, vol. 19, no. 3, pp. 889–899, March 2018 (doi: 10.1109/TITS.2017.2706756).
[5] K. Lin, C. Li, G. Fortino, J.J.P.C. Rodrigues, "Vehicle route selection based on game evolution in social internet of vehicles", IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2423–2430, Aug. 2018 (doi: 10.1109/JIOT.2018.2844215).
[6] C. Wang, L. Zhang, Z. Li, C. Jiang, "SDCoR: Software defined cognitive routing for internet of vehicles", IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3513–3520, Oct. 2018 (doi: 10.1109/JIOT.2018.2812210).
[7] L.L. Cardenas, A.M. Mezher, P.A.B. Bautista, M.A. Igartua, "A probability-based multimetric routing protocol for vehicular Ad Hoc networks in urban scenarios", IEEE Access, vol. 7, pp. 178020–178032, Dec. 2019 (doi: 10.1109/ACCESS.2019.2958743).
[8] T.S.J. Darwish, K.A. Bakar, K. Haseeb, "Reliable intersection-based traffic aware routing protocol for urban areas vehicular ad hoc networks", IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 1, pp. 60–73, Jan. 2018 (doi: 10.1109/MITS.2017.2776161).
[9] F. Abbas, P. Fan, "Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks", Vehicular Communications, vol. 12, pp. 66–74, Apr. 2018 (doi: 10.1016/j.vehcom.2018.02.004).
[10] H. Gao, C. Liu, Y. Li, X. Yang, "V2VR: Reliable hybrid-network-oriented V2V data transmission and routing considering RSUs and connectivity probability", IEEE Trans. on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3533–3546, Apr. 2021 (doi: 10.1109/TITS.2020.2983835).
[11] E. Pierro, A. D’Angola, G. Carbone, "Road vehicles travelling with time-dependent speed: theoretical study on the directional stability", Vehicle System Dynamics, vol. 59, no. 8, pp. 1–13, Aug. 2020 (doi: 10.1080/00423114.2020.1741654).
[12] B. Mazloumi-Fard, A. Hatamlou, "A road-aware routing protocol for inter-vehicle Ad-Hoc networks", Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 41, pp. 1–12, Oct. 2020 (in Persian) (doi: 20.1001.1.23223871.1399.11.43.5.8).
[13] M. Hasanhoseini, F. Mesrinejad, H. Mahdavi-Nasab, "A routing method for tracking a moving target with reduced energy consumption", Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 29–47, Oct. 2020 (in Persian) (doi: 20.1001.1.23223871.1399.11.43.3.6).
[14] S.R. Nabavi, N. Osati-Eraghi, J. Akbari-Torkestani, "Wireless sensor networks routing using clustering based on multi-objective particle swarm optimization algorithm", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 29-47, Dec. 2021 (in Persian) (dor: 20.1001.1.23223871.1400.12.3.3.3).
[15] M. Vafaei, A. Khademzadeh, M.A. Pourmina, "A new QoS-based routing protocol for video streaming in VANETs using ACO algorithm and fuzzy logic", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 46, pp. 49–68, Aug. 2021 (in Persian) (dor: 20.1001.1.23223871.1400.12.2.4.2).
[16] I. Zaimi, A. Boushaba, Z. Squalli Houssaini, M. Oumsis, "A fuzzy geographical routing approach to support real-time multimedia transmission for vehicular ad hoc networks", Wireless Networks, vol. 25, no. 3, pp. 1289–1311, Apr. 2019 (doi: 10.1007/s11276-018-1729-9).
[17] T. Thirugnanam, M.R. Ghalib, "A reward based connectivity-aware IoV neighbor selection for improving reliability in healthcare information exchange", Peer-to-Peer Networking and Applications, vol. 13, no. 6, pp. 2112–2122, Nov. 2020 (doi: 10.1007/s12083-019-00829-w).
[18] S. Khan, M. Alam, M. Fränzle, N. Müllner, Y. Chen, "A traffic aware segment-based routing protocol for VANETs in urban scenarios", Computers and Electrical Engineering, vol. 68, pp. 447–462, May 2018 (doi: 10.1016/j.compeleceng.2018.04.017).
[19] K.H.N. Bui, J.J. Jung, "ACO-based dynamic decision making for connected vehicles in IoT system", IEEE Trans. on Industrial Informatics, vol. 14, no. 8, pp. 5648-5655, Mar. 2019 (doi: 10.1109/TII.2019.2906886).
[20] M. Naderi, F. Zargari, M. Ghanbari, "Adaptive beacon broadcast in opportunistic routing for VANETs", Ad Hoc Networks, vol. 86, pp. 119–130, Apr. 2019 (doi: 10.1016/j.adhoc.2018.11.011).
[21] B. Wu, H. Shen, K. Chen, "Exploiting active subareas for multicopy routing in VDTNs", IEEE Trans. on Vehicular Technology, vol. 67, no. 5, pp. 4374–4388, Dec. 2018 (doi: 10.1109/ICCCN.2015.7288409).
[22] F. Li, X. Song, H. Chen, X. Li, Y. Wang, "Hierarchical routing for vehicular Ad Hoc networks via reinforcement learning", IEEE Trans. on Vehicular Technology, vol. 68, no. 2, pp. 1852–1865, Dec. 2019 (doi: 10.1109/TVT.2018.2887282).
[23] A. Silva, N. Reza, A. Oliveira, "Improvement and performance evaluation of GPSR-based routing techniques for vehicular ad hoc networks", IEEE Access, vol. 7, pp. 21722–21733, Feb. 2019 (doi: 10.1109/ACCESS.2019.2898776).
[24] D. Zhang, T. Zhang, X. Liu, "Novel self-adaptive routing service algorithm for application in VANET", Applied Intelligence, vol. 49, no. 5, pp. 1866–1879, May 2019 (doi: 10.1007/s10489-018-1368-y).
[25] X.Y. Yang, W.L. Zhang, H.M. Lu, L. Zhao, "V2V routing in VANET based on heuristic q-learning", International Journal of Computers, Communications and Control, vol. 15, no. 5, pp. 1–17, Oct. 2020 (doi: 10.15837/ijccc.2020.5.3928).
[26] B.S. Roh, M.H. Han, J.H. Ham, K.I. Kim, "Q-LBR: Q-learning based load balancing routing for UAV-assisted VANET", Sensors (Switzerland), vol. 20, no. 19, pp. 1–17, Oct. 2020 (doi: 10.3390/s20195685).
[27] K.Z. Ghafoor, L. Kong, D.B. Rawat, E. Hosseini, A.S. Sadiq, "Quality of service aware routing protocol in software-defined internet of vehicles", IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2817–2828, Oct. 2019 (doi: 10.1109/JIOT.2018.2875482).
[28] Y. Al-Mayouf, N. Abdullah, O. Mahdi, S. Khan, M. Ismail, M. Guizani, S. Ahmed, "Real-time intersection-based segment aware routing algorithm for urban vehicular networks", IEEE Trans. on Intelligent Transportation Systems, vol. 19, no. 7, pp. 2125–2141, May 2018 (doi: 10.1109/TITS.2018.2823312).
[29] J. Wu, M. Fang, H. Li, X. Li, "RSU-assisted traffic-aware routing based on reinforcement learning for urban vanets", IEEE Access, vol. 8, pp. 5733–5748, Jan. 2020 (doi: 10.1109/ACCESS.2020.2963850).
[30] W. Qi, B. Landfeldt, Q. Song, L. Guo, A. Jamalipour, "Traffic differentiated clustering routing in DSRC and C-V2X hybrid vehicular networks", IEEE Trans. on Vehicular Technology, vol. 69, no. 7, pp. 7723–7734, Apr. 2020 (doi: 10.1109/TVT.2020.2990174).
[31] C.V. Anamuro, N. Varsier, J. Schwoerer, X. Lagrange, "Distance-aware relay selection in an energy-efficient discovery protocol for 5G D2D communication", IEEE Trans. on Wireless Communications, vol. 20, no. 7, Feb. 2021 (doi: 10.1109/TWC.2021.3058636).
[32] J. Wan, J. Chen, "AHP based relay selection strategy for energy harvesting wireless sensor networks", Future Generation Computer Systems, vol. 128, pp. 36-44, Mar. 2022 (doi: 10.1016/j.future.2021.09.038).
[33] O. Zytoune, H. Fouchal, S. Zeadally, "A realistic relay selection scheme for cooperative MIMO networks", Ad Hoc Networks, vol. 124, Article Number: 02706, Jan. 2022 (doi: 10.1016/j.adhoc.2021.102706).
[34] S. Dang, J. Tang, J. Li, M. Wen, S. Abdullah, C. Li, "Combined relay selection enabled by supervised machine learning", IEEE Trans. on Vehicular Technology", vol. 70, no. 4, pp. 3938-3943, Mar. 2021 (doi: 10.1109/TVT.2021.3065074).
[35] C.H. Lin, K.H. Liu, "Relay selection for energy-harvesting relays with finite data buffer and energy storage", IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11249-11259, Jan. 2021 (doi: 10.1109/JIOT.2021.3053290).
[36] N. Ziaei, A. Avokh, "Relay selection, clustering, and data aggregation routing in wireless body area networks", International Journal of Communication Systems, vol. 34, no. 10, Article Number: e4837, July 2021 (doi: 10.1002/dac.4837).
[37] M.S. Azhdari, A. Barati, H. Barati, "A robust and smart approach to message broadcasts in vehicular ad hoc networks for emergency", Journal of Intelligent Procedures in Electrical Technology, pp. 1–20, Apr. 2022 (in Persian) (dor: 20.1001.1.23223871.1402.14.55.10.8).
[38] A. Avokh, A. S. Chaharsough, "Joint multi-hop clustering and routing in VANETs using array of doubly linked list", Journal of Modeling in Engineering, vol. 19, no. 67, pp. 13-32, Dec. 2021 (in Persian) (dor: 10.22075/jme.2021.22568.2037).
[39] H. Fatemidokht, M. Kuchaki Rafsanjani, "Improvement of the bee algorithm based on fuzzy set theory and gravitational search algorithm in VANETs", Tabriz Journal of Electrical Engineering, vol. 48, no. 4, pp. 1677-1689, Feb. 2019 (in Persian).
[40] M.K. Mirzaeei, J.S. Harsini, "A game-theoretic approach to defensive mechanism design for physical layer security: application to vehicular Ad-hoc networks", Tabriz Journal of Electrical Engineering, vol. 47, no. 1, pp. 211-220, Mar. 2017 (in Persian).
[41] A.S. Khan, K. Balan, Y. Javed, S. Tarmizi, J. Abdullah, "Secure trust-based blockchain architecture to prevent attacks in VANET", Sensors, vol. 19, no. 22, Nov. 2019 (doi: 10.3390/s19224954).
[42] Y. Taj, K. Faez, "History based reliability: a novel routing metric in mobile ad hoc networks", Proceeding of the IEEE/ICACT, vol. 2, pp. 1311-1315, Gangwon, Korea (South), Feb. 2010.
[43] M. Ezzat, M. Sakr, R. Elgohary, M. E. Khalifa, "Building road segments and detecting turns from GPS tracks", Journal of Computational Science, vol. 29, pp. 81–93, Nov. 2018 (doi: 10.1016/j.jocs.2018.09.011).
[44] Y. Taj, K. Faez, "Signal strength based reliability: a novel routing metric in MANETs", Proceeding of the IEEE/NSWCTC, vol. 1, pp. 37-40, Wuhan, China, Apr. 2010 (doi: 10.1109/NSWCTC.2010.17).
[45] P. Barbecho Bautista, L. Urquiza Aguiar, M. Aguilar Igartua, "How does the traffic behavior change by using SUMO traffic generation tools", Computer Communications, vol. 181, pp. 1–13, Jan. 2022 (doi: 10.1016/j.comcom.2021.09.023).
[46] S. Zhou, D. Li, Q. Tang, Y. Fu, C. Guo, X. Chen, "Multiple intersection selection routing protocol based on road section connectivity probability for urban VANETs", Computer Communications, vol. 177, pp. 255–264, Sept. 2021 (doi: 10.1016/j.comcom.2021.08.004).
[47] M. Ye, L. Guan, M. Quddus, "TDMP: Reliable target driven and mobility prediction based routing protocol in complex vehicular Ad-hoc network", Vehicular Communications, vol. 31, Article Paper: 100361, Oct. 2021 (doi: 10.1016/j.vehcom.2021.100361).
_||_