مبدل سوئیچنگ نرم غیره ایزوله بهره ولتاژ بالا با استفاده از سلف تزویج
محورهای موضوعی : انرژی های تجدیدپذیرجلیل جلیلی 1 , سید محمد مهدی میرطلائی 2 , محمدرضا محمدی 3 , بهروز مجیدی 4
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
3 - گروه مهندسی برق و کامپیوتر- دانشگاه آلبرتا، آلبرتا، کانادا
4 - مرکز تحقیقات ریز شبکههای هوشمند- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: مبدل, کلیدزنی نرم, افزاینده ولتاژ, غیرهایزوله,
چکیده مقاله :
در این مقاله یک مبدل کلیدزنی نرم غیره ایزوله بسیار افزاینده ولتاژ ارائه شده است. مبدل پیشنهادی ترکیبی از یک مبدل بوست و دو سلول ضرب کننده ولتاژ است. در این مبدل برای تحقق افزایش بهره ولتاژ از یک سلف کوپل شده استفاده شده است. این مبدل در مقایسه با مبدل های مشابه دارای بهره ولتاژ بالاتری است. با استفاده از یک مدار کلمپ اکتیو شرایط کلیدزنی نرم در ولتاژ صفر برای کلید های مبدل به وجود آمده است. همچنین تنش ولتاژ بر روی کلید ها پایین است. کاهش تنش ولتاژ بر روی کلید های مبدل باعث کاهش مقاومت هدایتی کلیدها و بنابراین باعث کاهش تلفات هدایتی می شود. در این مقاله عملکرد اولیه مبدل به طور کامل تشریح شده و نتایج شبیه سازی و یک نمونه آزمایشگاهی ساخته شده برای ولتاژ ورودی 20 ولت و خروجی 400 ولت در توان 200 وات به طور کامل ارائه شده است.
In this paper, a non-isolated high step-up soft-switching converter is proposed. The proposed converter is a boost converter combined with two voltage multiplier cells for boosting output voltage. Also, extend voltage gain of the proposed converter is achieved by using a coupled-inductor. Compare with other similar high step-up topologies with the same number of components, the proposed converter has a higher voltage gain and higher efficiency. An active clamp circuit is used so, the zero-voltage switching (ZVS) is achieved. Also, in the proposed converter, the voltage stresses on the switches are low. As the voltage stress decreases on the switch, Ron of the MOSFET is deceased and as a result conduction loss of the switch is decreased. So, the efficiency of this converter increased. In this paper, operational principle of the converter is described and the analytical, simulated results and prototype converters are validated using a 20V input and 400V output converter at 200W load.
[1] A. Annuk, M. Hovi, J. Kalder, T. Kabanen, R. Ilves, M. Märss, B. Martinkauppi, P. Miidla, "Methods for increasing shares of self-consumption in small PV solar energy applications", Proceeding of the IEEE/ICRERA, pp. 184-187, Glasgow UK, Sept. 2020 (doi: 10.1109/ICRERA49962.2020.9242902).
[2] M. Mahdavian, N. Behzadfar, "A review of wind energy conversion system and application of various induction generators", Journal of Novel Researches on Electrical Power, vol. 8, no. 4, pp. 55-66, Winter 2020.
[3] G. Shahgholian, “A brief review on microgrids: Operation, applications, modeling, and control”, International Transactions on Electrical Energy Systems, vol. 31, no. 6, Article Number. e12885, June 2021 (doi: 10.1002/2050-7038.12885).
[4] R.R. Gopi, S. Sreejith, "Converter topologies in photovoltaic applications–A review", Renewable and Sustainable Energy Reviews, vol. 94, pp. 1–14, Oct. 2018 (doi: 10.1016/j.rser.2018.05.047).
[5] A. Maleki, I. Sadeghkhani, B. Fani, “Statistical sensorless short-circuit fault detection algorithm for photovoltaic arrays”, Journal of Renewable and Sustainable Energy, vol. 11, no. 8, Article Number: 053501, 2019 (https://doi.org/10.1063/1.5119055).
[6] W. Li, X. He, "Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications", IEEE Trans. on Industrial Electronics, vol. 58, no. 4, pp. 1239–1250, April 2011 (doi: 10.1109/TIE.2010.2049715).
[7] A. Chub, D. Vinnikov, F. Blaabjerg, F.Z. Peng, "A review of galvanically isolated impedance-source dc–dc converters", IEEE Trans. on Power Electronics, vol. 31, no. 4, pp. 2808–2828, April 2016 (doi: 10.1109/TPEL.2015.2453128).
[8] S.M.M. Mirtalaei, R. Jaberi, "Analysis of a high step-up boost-flyback converter for solar energy applications", Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 34, pp. 19-28, Aug. 2018 (dor: 20.1001.1.23223871.1397.9.34.3.4).
[9] B.P.R. Baddipadiga, V.A.K. Prabhala, M. Ferdowsi, "A family of high-voltage-gain dc–dc converters based on a generalized structure", IEEE Trans. on Power Electronics, vol. 33, no. 10, pp. 8399–8411, Oct. 2018 (doi: 10.1109/TPEL.2017.2777451).
[10] A. Kianpour, G. Shahgholian, "A floating-output interleaved boost DC–DC converter with high step-up gain", Automatika (Journal for Control, Measurement, Electronics, Computing and Communications), vol. 58, no. 1, pp. 18-26, April 2017 (doi: 10.1080/00051144.2017.1305605).
[11] M.E. Azizkandi, F. Sedaghati, H. Shayeghi, F. Blaabjerg, "A high voltage gain dc-dc converter based on three winding coupled inductor and voltage multiplier cell", IEEE Trans. on Power Electronics, vol. 35, no. 5, pp. 4558-4567, May 2020 (doi: 10.1109/TPEL.2019.2944518).
[12] W. Hassan, D.D.C. Lu, W. Xiao, "Single-switch high step-up dc–dc converter with low and steady switch voltage stress", IEEE Trans. on Industrial Electronics, vol. 66, no. 12, pp. 9326–9338, Dec. 2019 (doi: 10.1109/TIE.2019.2893833).
[13] J. Ai, M. Lin, "Ultralarge gain step-up coupled-inductor dc–dc converter with an asymmetric voltage multiplier network for a sustainable energy system", IEEE Trans. on Power Electronics, vol. 32, no. 9, pp. 6896–6903, Sept. 2017 (doi: 10.1109/TPEL.2016.2626383).
[14] H. Ardi, A. Ajami, M. Sabahi, "A novel high step-up dc–dc converter with continuous input current integrating coupled inductor for renewable energy applications", IEEE Trans. on Industrial Electronics, vol. 65, no. 2, pp. 1306–1315, Feb. 2018 (doi: 10.1109/TIE.2017.2733476).
[15] A.M.S.S. Andrade, L. Schuch, M.L.S. Martins, "Analysis and design of high-efficiency hybrid high step-up dc–dc converter for distributed pv generation systems", IEEE Trans. on Industrial Electronics, vol. 66, no. 5, pp. 3860–3868, May 2019 (doi: 10.1109/TIE.2018.2840496).
[16] A. Nourbehesht, M. Jabbari, "Design and implementation of a new resonant soft-switching dc-dc buck converter", Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 38, pp. 3-12, Aug. 2019 (dor: 20.1001.1.23223871.1398.10.38.1.7).
[17] G. Haghshenas-Jazi, S.M.M. Mirtalaei, "Design and implementation of a high step-up boost-fly back converter with soft switching", Journal of Intelligent Procedures in Electrical Technology, vol. 7, no. 28, pp. 15-26, March 2017 (dor: 20.1001.1.23223871.1395.7.28.2.7).
[18] N. Vazquez, L. Estrada, C. Hernandez, E. Rodriguez, "The tapped-inductor boost converter", Proceeding of the IEEE/ISIE, pp. 538–543, Vigo, Spain, June 2007 (doi: 10.1109/ISIE.2007.4374654).
[19] S. Lee, J. Park, S. Choi, "A three-phase current-fed push-pull dc–dc converter with active clamp for fuel cell applications", IEEE. Trans. on Power Electronics, vol. 26, no. 8, pp. 2266-2277 Aug. 2011 (doi: 10.1109/TIE.2007.903925).
[20] T.F. Wu, Y.S. Lai, J.C. Hung, Y.M. Chen, "Boost converter with coupled inductors and buck–boost type of active clamp", IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154–162, Jan. 2008 (doi: 10.1109/TIE.2007.903925).
[21] J.W. Baek, M.H. Ryoo, T.J. Kim, D.W. Yoo, J.S. Kim, “High boost converter using voltage multiplier”, Proceeding of the IEEE/IECON, pp. 1-6, Raleigh, NC, USA, Jan. 2006 (doi: 10.1109/IECON.2005.1568967).
[22] M. Pahlavandust, M.R. Yazdani, “Single-switch boost DC-DC converter with zero-current-switching, high power density and low electromagnetic interference”, AEU- International Journal of Electronics and Communications, vol. 121, Article Number: 153229, July 2020 (doi: 10.1016/j.aeue.2020.153229).
[23] K. Fuji, Y. Neba, “Electromagnetic interference of using 24Vdc current control buck converter for medical light emitting diode”, Energy Reports, vol. 6, pp. 1325-1330, Dec. 2020 (doi: 10.1016/j.egyr.2020.11.026).
[24] H. Chung, S.Y.R. Hui, K.K. Tse, "Reduction of power converter EMI emission using soft-switching technique", IEEE Trans. on Electromagnetic Compatibility, vol. 40, no. 3, pp. 282-287, Aug. 1998 (doi: 10.1109/15.709428).
[25] J. Faiz, G. Shahgholian, M. Ehsan, “Stability analysis and simulation of a single‐phase voltage source UPS inverter with two‐stage cascade output filter”, European Transactions on Electrical Power, vol. 18, no. 1, pp. 29-49, Jan. 2008 (doi: 10.1002/etep.160).
[26] D. Zhang, E. Cheng, H. Wan, X. Zhou, Y. Chen, "Prediction of electromagnetic compatibility for dynamic datalink of UAV", IEEE Trans. on Electromagnetic Compatibility, vol. 61, no. 5, pp. 1474-1482, Oct. 2019 (doi: 10.1109/TEMC.2018.2867641).
_||_