بررسی اثر شدتهای نوری بر صفات رشدی، میزان فتوسنتز و هیپریسین کل در رقم توپاز و اکوتیپ میشو گیاه داروییHypericum perforatum
محورهای موضوعی : گیاهان داروییجاوید عمارت پرداز 1 , سجاد محرم نژاد 2 , جابر پناهنده 3 , مسعود چمنی 4 , محمدرضا زاده اسفهلان 5 , حسین کربلایی خیاوی 6
1 - دکترای فیزیولوژی گیاهان زراعی، دانشکده کشاورزی، دانشگاه تبریز
2 - موسسه تحقیقات اصلاح و تهیه نهال و بذر، مرکزتحقیقات، آموزش و ترویج کشاورزی و منابع طبیعی اردبیل، مغان
3 - گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
4 - گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
5 - دانش آموخته زراعت، دانشگاه علوم تحقیقات دانشگاه آزاد اسلامی، واحد اردبیل، اردبیل، ایران
6 - بخش تحقیقات گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل (مغان)، سازمان
تحقیقات، آموزش و ترویج کشاورزی، مغان، ایران.
کلید واژه: متابولیت, غلظت کلروفیل, هیپریسین, غده برگی,
چکیده مقاله :
گلراعی (Hypericum perforatum L.) یک گیاه علفی دائمی با متابولیتهائی مانند هیپریسین، سودوهیپریسین و هیپرفورین، بطور گسترده برای درمان افسردگی مورد استفاده قرار میگیرد. به منظور ارزیابی شدت نور (سه سطح نوری شامل شدت نور کامل، 75 درصد و 50 درصد) روی ارتفاع بوته، تعداد روزنه برگی، غلظت کلروفیل، فتوسنتز، تعداد غده برگی، وزن تر و خشک گل راعی و تولید هیپریسین کل آن در رقم توپاز و اکوتیپ میشو در سیستم هیدروپونیک با بستر ماسهای، آزمایشی بصورت کرتهای خرد شده در قالب بلوکهای کامل تصادفی با سه تکرار در گلخانه دانشگاه تبریز در سال 1396 اجرا شد. میزان غلظت کلروفیل و هیپریسین کل گل راعی با استفاده از دستگاه اسپکتروفتومتری اندازهگیری شد. نتایج حاصل نشان داد که اثر تیمار نوری روی صفات وزن تر و خشک بوته، ارتفاع، تعداد غده برگی، کلروفیلa ، کلروفیل b، روزنه برگی، فتوسنتز و میزان هیپریسین کل در بین رقم توپاز و اکوتیپ میشو اختلاف معنیدار بود. بیشترین وزن تر و خشک، تعداد غده برگی، فتوسنتز و هیپریسین کل مربوط به تیمار نوری کامل (100 درصد) بود. همچنین بیشترین میزان ارتفاع بوته، کلروفیل aو کلروفیل b مربوط به تیمار 50 درصد نور بود. در تمام صفات اندازهگیری شده رقم توپاز نسبت به اکوتیپ میشو برتری نشان داد. براساس نتایج حاصل میتوان با مدیریت مناسب شدت نور میزان هیپریسین گل راعی را افزایش داد.
Hypericum perforatum L. (St. John's wort) is a perennial herb which contains precious metabolites such as hypericin, pseudo-hypericin and hyporforin widely used in the treatment of mild to moderate depression. In order to evaluate light density (three levels including full light condition, 75% and 50% of full light intensities) on plant height, gland number per leaf, stomata number, chlorophyll content, fresh and dry weight, as well as hypericin production of Topaz cultivar and Mishu ecotype of H. perforatum under hydroponic conditions in the greenhouse, an experiment was carried out as split plots based on randomized complete blocks design with three replications at the University of Tabriz in 2017. The chlorophyll and hypericin contents were used by spectrophotometry. The results showed that the light density significantly affected on fresh and dry weight, plant height, gland number per leaf, chlorophylls a and b, photosynthesis and total hypericin content in the H. perforatum. The highest fresh and dry weight, gland number per leaf, stomata number, photosynthesis and total hypericin content were belonged to the full light conditions (100% light). The highest plant height, chlorophyll a and b were belonged to the 50% of prevalent light intensity. The results indicated that Topaz cultivar is better than Mishu ecotype. In conclusion, increasing hypericin content in Hypericum perforatum by managing of light intensity is possible.
- Arnao, M.B. and Hernández-Ruiz, J. 2014. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19: 789-797.
- Ayan, A.K. and Çirak, C. 2008. Hypericin and pseudohypericin contents in some Hypericum species growing in Turkey. Pharmaceutical Biology, 46: 288-291.
- Chen, J.W., Kuang, S.B., Long, G.Q., Yang, S.C., Meng, Z.G., Li, L.G., Chen, Z.J. and Zhang, G.H. 2016. Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Functional Plant Biology, 43: 479-491.
- Cirak, C., Radusiene, J., Camas, N.,Caliskan, O. and Odabas, M.S. 2013. Changes in the contents of main secondary metabolites in two Turkish Hypericum species during plant development. Pharmaceutical Biology, 51: 391-399.
- Coste, A., Vlase, L., Halmagyi, A., Deliu, C. and Coldea, G. 2011. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture, 106: 279-288.
- Dudareva, N., Negre, F., Nagegowda, D.A. and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences, 25: 417-440.
- Ebadi, A., Morshedloo, M., Fatahi Moghaddam, M. and Yazdani, D. 2012. Evaluation of some population of Hypericum perforatum L. using agro-morphological traits and most components of essential oil. Scientific Journal Management System, 3: 1-14.
- Emarat-Pardaz, J., Shakiba, M.R., Toorchi, M. and Mohammadinasab, A.D. 2013. The influence of light intensities and nitrogen on growth of Hypericum perforatum L. International Journal of Agriculture, 3: 77-781.
- Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagège, D., Courtois, D. and Joseph, C. 2013. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture, 113: 25-39.
- Govindjee, J. 2012. Photosynthesis V2 Development, Carbon Metabolism, and Plant Productivity. Elsevier. 608 p.
- Jaimand, K., Rezaee, M., Mozaffrian, V., Azadi, R., Naderi Haji Bagher Kandy, M., Meshkyzadeh, S. and Golipoor, M. 2008. Determination of hypericin content in flowers and leaves of eight Hypericum species. Journal of Medicinal Plants, 1: 49-55.
- Kashef, N., Borghei, Y.S. and Djavid, G.E. 2013. Photodynamic effect of hypericin on the microorganisms and primary human fibroblasts. Photodiagnosis and Photodynamic Therapy, 10: 150-155.
- Kazemi, S.Y., Abedirad, S.M., Zali, S.H. and Amiri, M. 2012. Hypericin from St. John’s Wort (Hypericum perforatum) as a novel natural fluorophore for chemiluminescence reaction of bis (2, 4, 6-trichlorophenyl) oxalate–H2O2–imidazole and quenching effect of some natural lipophilic hydrogen peroxide scavengers. Journal of Luminescence, 132: 1226-1231.
- Koperdakova, J., Brutovska, R. and Čellarova, E. 2004. Reproduction pathway analysis of several Hypericum perforatum L. somaclonal families. Hereditas, 140: 34-41.
- Nicolás, E., Torrecillas, A., DellAmico, J. and Alarcón, J.J. 2005. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. Journal of Plant Physiology, 162: 439-447.
- Odabas, M.S., Raduğieneuml, J., Camas, N., Janulis, V. and Ivanauskas, L. 2009. The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. Journal of Medicinal Plants Research, 3: 519-525.
- Odabas, M.S., Temizel, K.E., Caliskan, O., Senyer, N., Kayhan, G. and Ergun, E. 2014. Determination of reflectance values of hypericum's leaves under stress conditions using adaptive network based fuzzy inference system. Neural Network World, 24: 79-87.
- Perrone, R., Rosa, P., Castro, O. and Colombo, P. 2013. Leaf and stem anatomy in eight Hypericum species. Acta Botanica Croatica, 72: 269-286.
- Riazi, A., Majnoun Hosseini, N., Naghdi Badi, H., Naghavi, M., Rezazadeh, S. and Ajani, Y. 2011. The study of morphological characteristics of St. John’s Wort (Hypericum perforatum L.) populations in Iran’s natural habitats. Journal of Medicinal Plants, 3: 49-64.
- Sharopov, F., Gulmurodov, I. and Setzer, W. 2010. Essential oil composition of Hypericum perforatum L. and Hypericum scabrum L. growing wild in Tajikistan.
Journal of Chemical and Pharmaceutical Research, 2: 284-290. - Silvestrini, M., Válio, I.F.M. and Mattos, E.A.D. 2007. Photosynthesis and carbon gain under contrasting light levels in seedlings of a pioneer and a climax tree from a Brazilian Semideciduous Tropical Forest. Brazilian Journal of Botany, 30: 463-474.
- Skyba, M.,Urbanová, M., Kapchina-Toteva, V., Košuth, J., Harding, K. and Čellárová, E. 2010. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. CryoLetters, 31: 249-260.
- Smith, N.G. and Dukes, J.S. 2013. Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO2 Global Change Biology, 19: 45-63.
- Temizel, K.E. 2015. Estimation of the phenolics content of St. John’s wort (Hyperıcum perforatum L.) grown under different water and salt levels based on reflectance spectroscopy. Kuwait Journal of Science, 42: 104-114.
- Wölfle, U., Seelinger, G. and Schempp, C.M. 2014. Topical application of St. Johnʼs wort (Hypericum perforatum). Planta Medica, 80: 109-120.
- Yamanner, O., Erdag, B. and Gokbulut, C. 2013. Stimulation of the production of hypericins in in vitro seedlings of Hypericum adenotrichum by some biotic elicitors. Turkish Journal of Botany, 37: 153-159.
- Yamori, W. and Shikanai, T. 2016. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology, 67: 81-106.
- Zubek, S., Mielcarek, S. and Turnau, K. 2012. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 22: 149-156.
_||_
- Arnao, M.B. and Hernández-Ruiz, J. 2014. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19: 789-797.
- Ayan, A.K. and Çirak, C. 2008. Hypericin and pseudohypericin contents in some Hypericum species growing in Turkey. Pharmaceutical Biology, 46: 288-291.
- Chen, J.W., Kuang, S.B., Long, G.Q., Yang, S.C., Meng, Z.G., Li, L.G., Chen, Z.J. and Zhang, G.H. 2016. Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Functional Plant Biology, 43: 479-491.
- Cirak, C., Radusiene, J., Camas, N.,Caliskan, O. and Odabas, M.S. 2013. Changes in the contents of main secondary metabolites in two Turkish Hypericum species during plant development. Pharmaceutical Biology, 51: 391-399.
- Coste, A., Vlase, L., Halmagyi, A., Deliu, C. and Coldea, G. 2011. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture, 106: 279-288.
- Dudareva, N., Negre, F., Nagegowda, D.A. and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences, 25: 417-440.
- Ebadi, A., Morshedloo, M., Fatahi Moghaddam, M. and Yazdani, D. 2012. Evaluation of some population of Hypericum perforatum L. using agro-morphological traits and most components of essential oil. Scientific Journal Management System, 3: 1-14.
- Emarat-Pardaz, J., Shakiba, M.R., Toorchi, M. and Mohammadinasab, A.D. 2013. The influence of light intensities and nitrogen on growth of Hypericum perforatum L. International Journal of Agriculture, 3: 77-781.
- Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagège, D., Courtois, D. and Joseph, C. 2013. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture, 113: 25-39.
- Govindjee, J. 2012. Photosynthesis V2 Development, Carbon Metabolism, and Plant Productivity. Elsevier. 608 p.
- Jaimand, K., Rezaee, M., Mozaffrian, V., Azadi, R., Naderi Haji Bagher Kandy, M., Meshkyzadeh, S. and Golipoor, M. 2008. Determination of hypericin content in flowers and leaves of eight Hypericum species. Journal of Medicinal Plants, 1: 49-55.
- Kashef, N., Borghei, Y.S. and Djavid, G.E. 2013. Photodynamic effect of hypericin on the microorganisms and primary human fibroblasts. Photodiagnosis and Photodynamic Therapy, 10: 150-155.
- Kazemi, S.Y., Abedirad, S.M., Zali, S.H. and Amiri, M. 2012. Hypericin from St. John’s Wort (Hypericum perforatum) as a novel natural fluorophore for chemiluminescence reaction of bis (2, 4, 6-trichlorophenyl) oxalate–H2O2–imidazole and quenching effect of some natural lipophilic hydrogen peroxide scavengers. Journal of Luminescence, 132: 1226-1231.
- Koperdakova, J., Brutovska, R. and Čellarova, E. 2004. Reproduction pathway analysis of several Hypericum perforatum L. somaclonal families. Hereditas, 140: 34-41.
- Nicolás, E., Torrecillas, A., DellAmico, J. and Alarcón, J.J. 2005. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. Journal of Plant Physiology, 162: 439-447.
- Odabas, M.S., Raduğieneuml, J., Camas, N., Janulis, V. and Ivanauskas, L. 2009. The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. Journal of Medicinal Plants Research, 3: 519-525.
- Odabas, M.S., Temizel, K.E., Caliskan, O., Senyer, N., Kayhan, G. and Ergun, E. 2014. Determination of reflectance values of hypericum's leaves under stress conditions using adaptive network based fuzzy inference system. Neural Network World, 24: 79-87.
- Perrone, R., Rosa, P., Castro, O. and Colombo, P. 2013. Leaf and stem anatomy in eight Hypericum species. Acta Botanica Croatica, 72: 269-286.
- Riazi, A., Majnoun Hosseini, N., Naghdi Badi, H., Naghavi, M., Rezazadeh, S. and Ajani, Y. 2011. The study of morphological characteristics of St. John’s Wort (Hypericum perforatum L.) populations in Iran’s natural habitats. Journal of Medicinal Plants, 3: 49-64.
- Sharopov, F., Gulmurodov, I. and Setzer, W. 2010. Essential oil composition of Hypericum perforatum L. and Hypericum scabrum L. growing wild in Tajikistan.
Journal of Chemical and Pharmaceutical Research, 2: 284-290. - Silvestrini, M., Válio, I.F.M. and Mattos, E.A.D. 2007. Photosynthesis and carbon gain under contrasting light levels in seedlings of a pioneer and a climax tree from a Brazilian Semideciduous Tropical Forest. Brazilian Journal of Botany, 30: 463-474.
- Skyba, M.,Urbanová, M., Kapchina-Toteva, V., Košuth, J., Harding, K. and Čellárová, E. 2010. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. CryoLetters, 31: 249-260.
- Smith, N.G. and Dukes, J.S. 2013. Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO2 Global Change Biology, 19: 45-63.
- Temizel, K.E. 2015. Estimation of the phenolics content of St. John’s wort (Hyperıcum perforatum L.) grown under different water and salt levels based on reflectance spectroscopy. Kuwait Journal of Science, 42: 104-114.
- Wölfle, U., Seelinger, G. and Schempp, C.M. 2014. Topical application of St. Johnʼs wort (Hypericum perforatum). Planta Medica, 80: 109-120.
- Yamanner, O., Erdag, B. and Gokbulut, C. 2013. Stimulation of the production of hypericins in in vitro seedlings of Hypericum adenotrichum by some biotic elicitors. Turkish Journal of Botany, 37: 153-159.
- Yamori, W. and Shikanai, T. 2016. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology, 67: 81-106.
- Zubek, S., Mielcarek, S. and Turnau, K. 2012. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 22: 149-156.
- Arnao, M.B. and Hernández-Ruiz, J. 2014. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19: 789-797.
- Ayan, A.K. and Çirak, C. 2008. Hypericin and pseudohypericin contents in some Hypericum species growing in Turkey. Pharmaceutical Biology, 46: 288-291.
- Chen, J.W., Kuang, S.B., Long, G.Q., Yang, S.C., Meng, Z.G., Li, L.G., Chen, Z.J. and Zhang, G.H. 2016. Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Functional Plant Biology, 43: 479-491.
- Cirak, C., Radusiene, J., Camas, N.,Caliskan, O. and Odabas, M.S. 2013. Changes in the contents of main secondary metabolites in two Turkish Hypericum species during plant development. Pharmaceutical Biology, 51: 391-399.
- Coste, A., Vlase, L., Halmagyi, A., Deliu, C. and Coldea, G. 2011. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture, 106: 279-288.
- Dudareva, N., Negre, F., Nagegowda, D.A. and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences, 25: 417-440.
- Ebadi, A., Morshedloo, M., Fatahi Moghaddam, M. and Yazdani, D. 2012. Evaluation of some population of Hypericum perforatum L. using agro-morphological traits and most components of essential oil. Scientific Journal Management System, 3: 1-14.
- Emarat-Pardaz, J., Shakiba, M.R., Toorchi, M. and Mohammadinasab, A.D. 2013. The influence of light intensities and nitrogen on growth of Hypericum perforatum L. International Journal of Agriculture, 3: 77-781.
- Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagège, D., Courtois, D. and Joseph, C. 2013. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture, 113: 25-39.
- Govindjee, J. 2012. Photosynthesis V2 Development, Carbon Metabolism, and Plant Productivity. Elsevier. 608 p.
- Jaimand, K., Rezaee, M., Mozaffrian, V., Azadi, R., Naderi Haji Bagher Kandy, M., Meshkyzadeh, S. and Golipoor, M. 2008. Determination of hypericin content in flowers and leaves of eight Hypericum species. Journal of Medicinal Plants, 1: 49-55.
- Kashef, N., Borghei, Y.S. and Djavid, G.E. 2013. Photodynamic effect of hypericin on the microorganisms and primary human fibroblasts. Photodiagnosis and Photodynamic Therapy, 10: 150-155.
- Kazemi, S.Y., Abedirad, S.M., Zali, S.H. and Amiri, M. 2012. Hypericin from St. John’s Wort (Hypericum perforatum) as a novel natural fluorophore for chemiluminescence reaction of bis (2, 4, 6-trichlorophenyl) oxalate–H2O2–imidazole and quenching effect of some natural lipophilic hydrogen peroxide scavengers. Journal of Luminescence, 132: 1226-1231.
- Koperdakova, J., Brutovska, R. and Čellarova, E. 2004. Reproduction pathway analysis of several Hypericum perforatum L. somaclonal families. Hereditas, 140: 34-41.
- Nicolás, E., Torrecillas, A., DellAmico, J. and Alarcón, J.J. 2005. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. Journal of Plant Physiology, 162: 439-447.
- Odabas, M.S., Raduğieneuml, J., Camas, N., Janulis, V. and Ivanauskas, L. 2009. The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. Journal of Medicinal Plants Research, 3: 519-525.
- Odabas, M.S., Temizel, K.E., Caliskan, O., Senyer, N., Kayhan, G. and Ergun, E. 2014. Determination of reflectance values of hypericum's leaves under stress conditions using adaptive network based fuzzy inference system. Neural Network World, 24: 79-87.
- Perrone, R., Rosa, P., Castro, O. and Colombo, P. 2013. Leaf and stem anatomy in eight Hypericum species. Acta Botanica Croatica, 72: 269-286.
- Riazi, A., Majnoun Hosseini, N., Naghdi Badi, H., Naghavi, M., Rezazadeh, S. and Ajani, Y. 2011. The study of morphological characteristics of St. John’s Wort (Hypericum perforatum L.) populations in Iran’s natural habitats. Journal of Medicinal Plants, 3: 49-64.
- Sharopov, F., Gulmurodov, I. and Setzer, W. 2010. Essential oil composition of Hypericum perforatum L. and Hypericum scabrum L. growing wild in Tajikistan.
Journal of Chemical and Pharmaceutical Research, 2: 284-290. - Silvestrini, M., Válio, I.F.M. and Mattos, E.A.D. 2007. Photosynthesis and carbon gain under contrasting light levels in seedlings of a pioneer and a climax tree from a Brazilian Semideciduous Tropical Forest. Brazilian Journal of Botany, 30: 463-474.
- Skyba, M.,Urbanová, M., Kapchina-Toteva, V., Košuth, J., Harding, K. and Čellárová, E. 2010. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. CryoLetters, 31: 249-260.
- Smith, N.G. and Dukes, J.S. 2013. Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO2 Global Change Biology, 19: 45-63.
- Temizel, K.E. 2015. Estimation of the phenolics content of St. John’s wort (Hyperıcum perforatum L.) grown under different water and salt levels based on reflectance spectroscopy. Kuwait Journal of Science, 42: 104-114.
- Wölfle, U., Seelinger, G. and Schempp, C.M. 2014. Topical application of St. Johnʼs wort (Hypericum perforatum). Planta Medica, 80: 109-120.
- Yamanner, O., Erdag, B. and Gokbulut, C. 2013. Stimulation of the production of hypericins in in vitro seedlings of Hypericum adenotrichum by some biotic elicitors. Turkish Journal of Botany, 37: 153-159.
- Yamori, W. and Shikanai, T. 2016. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology, 67: 81-106.
- Zubek, S., Mielcarek, S. and Turnau, K. 2012. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 22: 149-156.
- Arnao, M.B. and Hernández-Ruiz, J. 2014. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19: 789-797.
- Ayan, A.K. and Çirak, C. 2008. Hypericin and pseudohypericin contents in some Hypericum species growing in Turkey. Pharmaceutical Biology, 46: 288-291.
- Chen, J.W., Kuang, S.B., Long, G.Q., Yang, S.C., Meng, Z.G., Li, L.G., Chen, Z.J. and Zhang, G.H. 2016. Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Functional Plant Biology, 43: 479-491.
- Cirak, C., Radusiene, J., Camas, N.,Caliskan, O. and Odabas, M.S. 2013. Changes in the contents of main secondary metabolites in two Turkish Hypericum species during plant development. Pharmaceutical Biology, 51: 391-399.
- Coste, A., Vlase, L., Halmagyi, A., Deliu, C. and Coldea, G. 2011. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture, 106: 279-288.
- Dudareva, N., Negre, F., Nagegowda, D.A. and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences, 25: 417-440.
- Ebadi, A., Morshedloo, M., Fatahi Moghaddam, M. and Yazdani, D. 2012. Evaluation of some population of Hypericum perforatum L. using agro-morphological traits and most components of essential oil. Scientific Journal Management System, 3: 1-14.
- Emarat-Pardaz, J., Shakiba, M.R., Toorchi, M. and Mohammadinasab, A.D. 2013. The influence of light intensities and nitrogen on growth of Hypericum perforatum L. International Journal of Agriculture, 3: 77-781.
- Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagège, D., Courtois, D. and Joseph, C. 2013. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture, 113: 25-39.
- Govindjee, J. 2012. Photosynthesis V2 Development, Carbon Metabolism, and Plant Productivity. Elsevier. 608 p.
- Jaimand, K., Rezaee, M., Mozaffrian, V., Azadi, R., Naderi Haji Bagher Kandy, M., Meshkyzadeh, S. and Golipoor, M. 2008. Determination of hypericin content in flowers and leaves of eight Hypericum species. Journal of Medicinal Plants, 1: 49-55.
- Kashef, N., Borghei, Y.S. and Djavid, G.E. 2013. Photodynamic effect of hypericin on the microorganisms and primary human fibroblasts. Photodiagnosis and Photodynamic Therapy, 10: 150-155.
- Kazemi, S.Y., Abedirad, S.M., Zali, S.H. and Amiri, M. 2012. Hypericin from St. John’s Wort (Hypericum perforatum) as a novel natural fluorophore for chemiluminescence reaction of bis (2, 4, 6-trichlorophenyl) oxalate–H2O2–imidazole and quenching effect of some natural lipophilic hydrogen peroxide scavengers. Journal of Luminescence, 132: 1226-1231.
- Koperdakova, J., Brutovska, R. and Čellarova, E. 2004. Reproduction pathway analysis of several Hypericum perforatum L. somaclonal families. Hereditas, 140: 34-41.
- Nicolás, E., Torrecillas, A., DellAmico, J. and Alarcón, J.J. 2005. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. Journal of Plant Physiology, 162: 439-447.
- Odabas, M.S., Raduğieneuml, J., Camas, N., Janulis, V. and Ivanauskas, L. 2009. The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. Journal of Medicinal Plants Research, 3: 519-525.
- Odabas, M.S., Temizel, K.E., Caliskan, O., Senyer, N., Kayhan, G. and Ergun, E. 2014. Determination of reflectance values of hypericum's leaves under stress conditions using adaptive network based fuzzy inference system. Neural Network World, 24: 79-87.
- Perrone, R., Rosa, P., Castro, O. and Colombo, P. 2013. Leaf and stem anatomy in eight Hypericum species. Acta Botanica Croatica, 72: 269-286.
- Riazi, A., Majnoun Hosseini, N., Naghdi Badi, H., Naghavi, M., Rezazadeh, S. and Ajani, Y. 2011. The study of morphological characteristics of St. John’s Wort (Hypericum perforatum L.) populations in Iran’s natural habitats. Journal of Medicinal Plants, 3: 49-64.
- Sharopov, F., Gulmurodov, I. and Setzer, W. 2010. Essential oil composition of Hypericum perforatum L. and Hypericum scabrum L. growing wild in Tajikistan.
Journal of Chemical and Pharmaceutical Research, 2: 284-290. - Silvestrini, M., Válio, I.F.M. and Mattos, E.A.D. 2007. Photosynthesis and carbon gain under contrasting light levels in seedlings of a pioneer and a climax tree from a Brazilian Semideciduous Tropical Forest. Brazilian Journal of Botany, 30: 463-474.
- Skyba, M.,Urbanová, M., Kapchina-Toteva, V., Košuth, J., Harding, K. and Čellárová, E. 2010. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. CryoLetters, 31: 249-260.
- Smith, N.G. and Dukes, J.S. 2013. Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO2 Global Change Biology, 19: 45-63.
- Temizel, K.E. 2015. Estimation of the phenolics content of St. John’s wort (Hyperıcum perforatum L.) grown under different water and salt levels based on reflectance spectroscopy. Kuwait Journal of Science, 42: 104-114.
- Wölfle, U., Seelinger, G. and Schempp, C.M. 2014. Topical application of St. Johnʼs wort (Hypericum perforatum). Planta Medica, 80: 109-120.
- Yamanner, O., Erdag, B. and Gokbulut, C. 2013. Stimulation of the production of hypericins in in vitro seedlings of Hypericum adenotrichum by some biotic elicitors. Turkish Journal of Botany, 37: 153-159.
- Yamori, W. and Shikanai, T. 2016. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology, 67: 81-106.
- Zubek, S., Mielcarek, S. and Turnau, K. 2012. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 22: 149-156.