اثرات آلودگی سرب در پارامترهای رشد، محتوای پروتئینی، قندها و ساختار تشریحی گیاه یونجه (Medicago sativa L.)
محورهای موضوعی : ژنتیکسارا سعادتمند 1 , حمید فهیمی 2 , علیرضا علاالدینی 3
1 - گروه زیست شناسی، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران
2 - گروه زیست شناسی، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران
3 - گروه زیست شناسی، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران
کلید واژه: یونجه, فلزات سنگین, آلودگی سرب, نیترات سرب, Pb2+, . Medicago sativa L,
چکیده مقاله :
در این تحقیق اثرات ناشی از 4 غلظت مختلف نیترات سرب (mM 2 ـ 1 ـ 5/0 ـ 25/0) بر پارامترهای رشد گیاه یونجه معمولی (.Medicago sativa L) مورد مطالعه قرار گرفته است. طول دوره تیمار 20 روز بوده و در پایان دوره تیمار، پارامترهایی مثل طول ریشه و ساقه، وزن تر و خشک ریشه و اندامهای هوایی و سطح پهنک اندازهگیری شده و میزان جذب سرب، تغییرات قندهای محلول و نامحلول، تغییرات پروتئین کل و الکتروفورز SDS – PAGE در ریشهها و بخشهای هوایی بررسی گردید و برشهای میکروسکوپی نیز مورد مطالعه قرار گرفت. بررسی هایی آماری بوسیله نرم افزار SPSS و جدول آنالیز واریانس ANOVA و آزمون دانکن انجام شده است. آزمایشات نشان داد که طول ریشه و ساقه، وزن تر و خشک ریشه و اندامهای هوایی و سطح پهنک برگ با افزایش غلظت سرب، کاهش پیدا میکند و تنش سرب موجب افزایش چوب و فیبر در گیاه میگردد. همچنین میزان تجمع سرب در اندامهای گیاه با افزایش غلظت سرب در تیمارها افزایش پیدا میکند. از طرفی با افزایش غلظت سرب میزان قندهای محلول در ریشهها و بخشهای هوایی کاسته شده ولی میزان پروتئینها افزایش مییابد. قندهای نامحلول در اندامهای هوایی زیاد شده ولی در ریشهها کاهش مییابد. بررسی پروفیل پروتئینها در ژل الکتروفورز نیز حاکی از اختلاف باندهای پروتئینی بین گیاهان تیمار شده و شاهد است. این تحقیقات ثابت میکند که گیاهMedicago sativa یک گیاه مقاوم به مسمومیت سرب است و میتواند سرب را به مقدار نسبتاً زیاد در بافتهای زمینی و هوایی خود انباشته کند.
In this investigation, the effects of various concentrations of Pb(NO3)2 (0.25–0.5–1–2mM) on the growth parameters in Medicago sativa L. were studied. The Treatment period was 20 days and the end of this period, the length, dry weight, and fresh weight of roots and shoots, leaves area, microscopically observation, accumulation of lead in roots and shoots, determination of soluble and insoluble sugars, total proteins and profile of proteins by SDS-PAGE, measured and studied. The statistical studies were carried out by SPSS software and variance analysis (ANOVA) and Duncan test. The results showed that lead toxicity decreased significantly roots and shoots length, leaves area, dry and fresh weight and in the high concentration of Pb+2, lignin biosynthesis and fiber were increased. Analyzing of lead content in the roots and shoots by atomic absorption indicated that, the lead absorption excess by increasing level of lead in treatments. When the concentration of lead increased, the amount of soluble sugars in shoots and roots were decreased whereas insoluble sugars in shoots were increased but in roots were decreased. By increasing lead in treatment both in shoots and roots, the total protein increased. The profile of proteins by SDS-PAGE showed some changes as compared with control plants. This research indicated that the Medicago sativa L. is a heavy metal tolerant plant and absorbed high level of lead from soil and accumulated in roots and shoots tissues.
Ahmed,A., Tajmir – Riahi HA (1993). Intraction of toxic metal ions Cd2+and with harvesting proteins of chloroplast thylakoid membranes. An FTIR spectroscopic study. j. Inorg. Biochem.50
Cobbett,cs, (2000) , Phytochelatin biosynthesis and function in heavy metal detoxification. curr.opin.plant Bio.3
Eun,so; Youn,Hs; Lee,Y, (2000). Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol. Plant 110:357-365
Gaspar, G.M. and Anton, A., (2002). Heavy metal uptake by two radish varieties. Hungarian congeress on plant physiology Vol. 46 (3 – 4): 113-114
Georgieva,V; Tasev,C (1997). Growth, yield, lead, zinc and cadmium content of radish, pea, and pepper plants as influenced by level of single and multiple contamination of soil. Bul.G.J. plant Physiol , 23(1-2),12-23
Kabata-pendias, A, (2001). Trace elements in soils and plants. Third edition , pp.413.
Kochert, J. 1978. Carbohydrates determination by the phenol-sulphuric acid methods. In:J.A. Hellubust and J.S.raigie(eds),Hand book of physiological methods. Cambrige University Press.pp.96-97.
Kosobrukhov, A; Knyazeva, I, (2004). plantago major plants responses to increase content of lead in soil: growth and photosynthesis. Plant Grow Regular. 42: 145 – 151.
Larbi, A; Morales, F, (2003). Effect of Cd and Pb in sugar beet plants grown in nutrient solution. Functional Plant Biology , 20(12),1453-1464.
Lowry,O.H.,Rosbroch,N.J.,Farr and Randall, R.J. (1951). Protein measurement with the folin reagent. J. Biol. Chem..193: 256-273.
Mishra, A; Choudhari, MA, (1998). Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants, Biol. Plant. 41:469-473
Mohanty, N; Vass, I; Demeter, S, (1989). Copper toxicity affects photosystem II election transport at . Plant Physiol. 90: 175-179
Ma, J.F. (2004). Role of organic acids in detoxification of Aluminum in higher plants. Plant Cell Physiologic. 41: 383-390
Oliver, D; Nadiv, R, (2003). Uptake of Cu, Pb, Cd, as and DDT by vegetables Grown in urban environments. Environmental Protection and Heritage Council ( EPHC): 151-161
Pallavi, Sh; Rama, Sh, D, (2005). Lead toxicity in plants. Brazilian Journal of plant physiology. vol, 17, no 1
Prasada, M.N.V. and Strzalka, K. (1999). Impact of heavy metals on photosynthesis in heavy metal stress in plants. Prasasa, M.N.V. and Hagemeyer, J.Eds. Springer Heidelberg, 117.
Samardakiew, S; Wozny, A, (2000). The distribution of lead in dunckweed root tip. plant soil 226: 107-111
Sharma, P; Dubey, RS, (2004). Ascorbate peroxides from rice seeding. Plant sci. 167: 541-550
Stefanov, K et al, (1995). Effects of lead ions on the phospholipid composition in leaves of Zea mays and Phasolous vulgaris.J. Plant physiol. 147: 243-246
Verma, S; Dubey, RS, (2003). Lead toxicity induces lipid proxidation and alters the activity of antioxidant enzymes in growing rice plants. Plant. Sci. 164: 645-655
Yell Yang, et al, (2000). Identification of rice varieties with high tolerance or sensivity to lead and characterization of the mechanism of to tolerance. Plant physiol. Nov. 2000 vol, 124: 1019-1026
_||_
Ahmed,A., Tajmir – Riahi HA (1993). Intraction of toxic metal ions Cd2+and with harvesting proteins of chloroplast thylakoid membranes. An FTIR spectroscopic study. j. Inorg. Biochem.50
Cobbett,cs, (2000) , Phytochelatin biosynthesis and function in heavy metal detoxification. curr.opin.plant Bio.3
Eun,so; Youn,Hs; Lee,Y, (2000). Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol. Plant 110:357-365
Gaspar, G.M. and Anton, A., (2002). Heavy metal uptake by two radish varieties. Hungarian congeress on plant physiology Vol. 46 (3 – 4): 113-114
Georgieva,V; Tasev,C (1997). Growth, yield, lead, zinc and cadmium content of radish, pea, and pepper plants as influenced by level of single and multiple contamination of soil. Bul.G.J. plant Physiol , 23(1-2),12-23
Kabata-pendias, A, (2001). Trace elements in soils and plants. Third edition , pp.413.
Kochert, J. 1978. Carbohydrates determination by the phenol-sulphuric acid methods. In:J.A. Hellubust and J.S.raigie(eds),Hand book of physiological methods. Cambrige University Press.pp.96-97.
Kosobrukhov, A; Knyazeva, I, (2004). plantago major plants responses to increase content of lead in soil: growth and photosynthesis. Plant Grow Regular. 42: 145 – 151.
Larbi, A; Morales, F, (2003). Effect of Cd and Pb in sugar beet plants grown in nutrient solution. Functional Plant Biology , 20(12),1453-1464.
Lowry,O.H.,Rosbroch,N.J.,Farr and Randall, R.J. (1951). Protein measurement with the folin reagent. J. Biol. Chem..193: 256-273.
Mishra, A; Choudhari, MA, (1998). Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants, Biol. Plant. 41:469-473
Mohanty, N; Vass, I; Demeter, S, (1989). Copper toxicity affects photosystem II election transport at . Plant Physiol. 90: 175-179
Ma, J.F. (2004). Role of organic acids in detoxification of Aluminum in higher plants. Plant Cell Physiologic. 41: 383-390
Oliver, D; Nadiv, R, (2003). Uptake of Cu, Pb, Cd, as and DDT by vegetables Grown in urban environments. Environmental Protection and Heritage Council ( EPHC): 151-161
Pallavi, Sh; Rama, Sh, D, (2005). Lead toxicity in plants. Brazilian Journal of plant physiology. vol, 17, no 1
Prasada, M.N.V. and Strzalka, K. (1999). Impact of heavy metals on photosynthesis in heavy metal stress in plants. Prasasa, M.N.V. and Hagemeyer, J.Eds. Springer Heidelberg, 117.
Samardakiew, S; Wozny, A, (2000). The distribution of lead in dunckweed root tip. plant soil 226: 107-111
Sharma, P; Dubey, RS, (2004). Ascorbate peroxides from rice seeding. Plant sci. 167: 541-550
Stefanov, K et al, (1995). Effects of lead ions on the phospholipid composition in leaves of Zea mays and Phasolous vulgaris.J. Plant physiol. 147: 243-246
Verma, S; Dubey, RS, (2003). Lead toxicity induces lipid proxidation and alters the activity of antioxidant enzymes in growing rice plants. Plant. Sci. 164: 645-655
Yell Yang, et al, (2000). Identification of rice varieties with high tolerance or sensivity to lead and characterization of the mechanism of to tolerance. Plant physiol. Nov. 2000 vol, 124: 1019-1026