واکنش لوبیا سبز (Phaseolus vulgaris L.) به باکتریهای محرک رشد گیاهی، تراکم بوته و رقابت با علفهای هرز: با تمرکز بر خصوصیات رنگدانههای فتوسنتزی و غیرفتوسنتزی و عملکرد
محورهای موضوعی : مورفوفیزیولوژیکیارسطو عباسیان 1 , مهدی یوسف پور 2 , رحمت عباسی 3 , سید جابر حسینی 4
1 - گروه زراعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران.
2 - گروه زراعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران
3 - گروه زراعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران
4 - گروه زراعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران
کلید واژه: حبوبات, علف هرز, فسفر, کاروتنوئید, کلروفیل, نیتروژن,
چکیده مقاله :
پژوهش حاضر به منظور بررسی اثرات تیمارهای وجین، تلقیح باکتری ریزوبیوم ژاپنیکوم و تراکم بر خصوصیات عملکرد و ویژگیهای فیزیولوژیکی گیاه لوبیا سبز در شرایط مزرعهای در سال زراعی 1400 انجام شد. آزمایش به صورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی با چهار تکرار اجرا شد. تیمارهای آزمایشی شامل میزان تراکم (16، 20 و 24 بوته در متر مربع)، تلقیح باکتری محرک رشد (تلقیح و عدم تلقیح) و وجین (وجین و عدم وجین) بود. صفات اندارهگیری شده در این آزمایش شامل کلروفیل a، b و کل، کاروتنوئیدها، a/b، نسبت کلروفیل کل به کاروتنوئید ها و وزن تر غلاف بود. نتایج تجزیه واریانس نشان داد که برهمکنش سهگانه برای صفات کلروفیل a، b و کل، نسبت کلروفیل کل به کاروتنوئیدها، فسفر برگ و پتاسیم برگ معنیدار بود. تیمار عدم وجین+تراکم 20 بوته در متر مربع+تلقیح باکتری (59/13 میکروگرم بر میلیلیتر) دارای بیشترین میزان کلروفیل کل بود. بیشترین میزان ترکیبات کاروتنوئیدی مربوط به تیمار تراکم 24 بوته در متر مربع+عدم تلقیح باکتری (60/2 میکروگرم بر میلیلیتر) بود، در صورتی که کمترین مقدار کاروتنوئید ها در تیمار تراکم 16 بوته در متر مربع+عدم تلقیح باکتری (87/0 میکروگرم بر میلیلیتر) مشاهده شد. بیشترین مقدار فسفر برگ مربوط به تیمار وجین+تراکم 24 بوته در متر مربع+عدم تلقیح باکتری (49/0 میلیگرم بر گرم وزن خشک) بود. بیشترین میزان پتاسیم برگ نیز به تیمار عدم وجین+تراکم 24 بوته در متر مربع+عدم تلقیح باکتری (84/0 میلیگرم بر گرم وزن خشک) تعلق داشت. بیشترین میزان نیتروژن برگ مربوط به تیمار عدم تلقیح+تراکم 20 بوته در متر مربع (65/1 میلیگرم بر گرم وزن خشک) بود. تیمار تلقیح باکتری+تراکم 24 بوته در متر مربع (38/9 تن در هکتار) بیشترین میزان وزن تر غلاف را دارا بود، در صورتی که کمترین مقدار وزن تر غلاف در تیمار عدم تلقیح باکتری+تراکم 16 بوته در متر مربع (24/4 تن در هکتار) مشاهده شد. همچنین در برهمکنش وجین × تراکم مشاهده شد که تیمار وجین+تراکم 24 بوته در متر مربع (36/8 تن در هکتار) دارای بیشترین میزان وزن تر غلاف بود. تراکم مطلوب برای گیاه لوبیا سبز جهت حصول بالاترین میزان عملکرد تراکم 24 بوته در متر مربع و تلقیح باکتریهای محرک رشد میباشد.
The current study examined the impacts of weeding treatments, Rhizobium japonicum inoculation, and plant density on the yield and physiological traits of green bean plants under field conditions during the 2021 crop year. The experiment was designed as a factorial using a randomized complete block design with three replications. The experimental treatments included three levels of plant density (16, 20, and 24 plants per square meter), the inoculation of growth-promoting bacteria (with and without inoculation), and weeding (with and without weeding). The traits measured in this experiment include chlorophyll a, b, and total chlorophyll, carotenoids, the a/b ratio, the total chlorophyll to carotenoid ratio, and pod fresh weight.
The results of analysis of variance showed that the triple interaction was significant for the traits chlorophyll a, b, and total, the ratio of total chlorophyll to carotenoids, leaf phosphorus and leaf potassium. The treatment of non-weeding + density of 20 plants per square meter + bacterial inoculation (13.59 μg/ml) had the highest amount of total chlorophyll. The highest amount of carotenoid was related to 24 plants per square meter density + non-inoculation (2.60 μg/ml), while the lowest amount of carotenoid was observed in 16 plants per square meter density + non-inoculation (0.87 μg/ml). The highest amount of leaf phosphorus content (0.49 mg/g dry weight) was observed in weeding + 24 plants per square meter density non-inoculation treatment. The highest amount of leaf potassium (0.84 mg/g dry weight) was related to the treatment of non-weeding + 24 plants per square meter density + non-inoculation. The highest amount of leaf nitrogen (1.65 mg/g dry weight) was obtained by the treatment of non-inoculation + density of 20 plants per square meter. The treatment with bacterial inoculation + density of 24 plants per square meter had the highest amount of pod fresh weight (9.38 tons per hectare), while the lowest value (4.24 tons per hectare) was observed in the non-inoculation + density of 16 plants per square meter treatment. Also, interaction between weeding and plant density showed that the weeding + 24 plants per square meter density had the highest pod fresh weight (8.36 tons per hectare). The optimal density for green bean plants to achieve the highest yield is 24 plants per square meter, and inoculation with growth-promoting bacteria.
Extended Abstract
Introduction
Green bean (Phaseolus vulgaris L.) is one of the world’s most important legumes and a rich source of plant-based protein. Given its critical role in meeting the food demands of a growing global population, optimizing cultivation practices and improving production efficiency is of particular significance. Key factors influencing the physiological and yield-related traits of green bean include plant density, weed management, and the application of plant growth-promoting rhizobacteria (PGPR). Appropriate plant density can enhance leaf area index and optimize light interception, thereby improving plant growth and yield. Additionally, bacteria such as Rhizobium japonicum play a vital role in sustainable agriculture through biological nitrogen fixation, phosphorus solubilization, and enhancement of the plant’s defense system. Conversely, weeds negatively affect crop growth by competing for water, nutrients, and light. Therefore, this study aimed to investigate the interactive effects of plant density, inoculation with Rhizobium japonicum, and weeding on the physiological characteristics and yield of green bean under field conditions.
Materials and Methods
This experiment was conducted during the 2021–2022 growing season in Neka County, Mazandaran Province, Iran, as a factorial arrangement within a randomized complete block design with four replications. The experimental factors included three plant densities (16, 20, and 24 plants per square meter), inoculation with Rhizobium japonicum (inoculated vs. non-inoculated), and weeding (weeded vs. non-weeded). Prior to planting, uniform applications of chemical fertilizers containing nitrogen, phosphorus, and potassium were made across all plots. Sampling was carried out at the end of the growing season, and measured traits included photosynthetic pigments (chlorophyll a, b, and total, carotenoids, chlorophyll a/b ratio, and total chlorophyll to carotenoid ratio), leaf nutrient contents (nitrogen, phosphorus, and potassium), and fresh pod yield. Data were analyzed using SAS software (version 9.1), and treatment means were compared using the least significant difference (LSD) test at the 5% probability level.
Results
Analysis of variance revealed that the three-way interaction among treatments significantly affected most physiological traits, including chlorophylls a, b, and total, total chlorophyll to carotenoid ratio, and leaf phosphorus and potassium contents. The highest total chlorophyll content (13.59 µg/mL) was observed in the combined treatment of “no weeding + 20 plants/m² + bacterial inoculation.” The maximum carotenoid content (2.60 µg/mL) occurred in the “24 plants/m² + non-inoculated” treatment, whereas the minimum (0.87 µg/mL) was recorded in “16 plants/m² + non-inoculated.” The highest leaf phosphorus concentration (0.49 mg/g dry weight) was obtained in the “weeding + 24 plants/m² + non-inoculated” treatment, and the greatest potassium content (0.84 mg/g dry weight) was found in “no weeding + 24 plants/m² + non-inoculated.” The highest leaf nitrogen content (1.65 mg/g dry weight) corresponded to the “non-inoculated + 20 plants/m²” treatment. In terms of yield, the maximum fresh pod weight (9.38 t/ha) was achieved in the interaction “inoculation + 24 plants/m²,” and a similarly high value (8.36 t/ha) was recorded in “weeding + 24 plants/m²,” while the lowest yield (4.24 t/ha) was observed in “non-inoculated + 16 plants/m².”
Conclusion
This study demonstrated that the interaction among plant density, bacterial inoculation, and weeding exerts complex and multifaceted effects on the physiological traits and yield of green bean. Increasing plant density, particularly to 24 plants/m² led to higher levels of total chlorophyll, carotenoids, and leaf nutrient concentrations. Weeding, by reducing weed competition, also improved certain physiological traits and yield. Inoculation with Rhizobium japonicum enhanced leaf phosphorus and chlorophyll content under specific conditions (notably at moderate densities), although its effects on nitrogen and potassium were strongly influenced by plant density and competitive conditions. Overall, the highest fresh pod yield was achieved under the combined conditions of “24 plants/m² + bacterial inoculation,” highlighting the importance of simultaneously managing plant density and applying biofertilizers for sustainable green bean production. Therefore, to maximize yield in similar environments, it is recommended to use a high plant density (24 plants/m²) along with seed inoculation with Rhizobium japonicum and effective weed control.
Abulfaraj, A.A., and Jalal, R.S. (2021). Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants. Saudi Journal of Biological Sciences. 28(7): 3823-3834.
Agathokleous, E., Feng, Z., and Peñuelas, J. (2020). Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants?. Science of The Total Environment, 726: 138637.
ALKahtani, M.D., Attia, K.A., Hafez, Y.M., Khan, N., Eid, A.M., Ali, M.A., and Abdelaal, K. A. (2020). Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy. 10(8): 1180.
Asaduzzaman, M., Pratley, J.E., Luckett, D., Lemerle, D., and Wu, H. (2020). Weed management in canola (Brassica napus L): A review of current constraints and future strategies for Australia. Archives of Agronomy and Soil Science. 66(4): 427-444.
Assefa, Y., Carter, P., Hinds, M., Bhalla, G., Schon, R., Jeschke, M., and Ciampitti, I. A. (2018). Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Scientific Reports. 8(1): 1-11.
Bechtaoui, N., Raklami, A., Benidire, L., Tahiri, A.I., Göttfert, M., and Oufdou, K. (2020). Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Polish Journal of Environmental Studies. 29(2): 1557-1565.
Bremner, J. M. )1996(. Nitrogen Total. Methods of Soil Analysis. Leonard Hill, London.
Bhat, M.A., Kumar, V., Bhat, M.A., Wani, I.A., Dar, F.L., Farooq, I., and Jan, A. T. (2020). Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Frontiers in Microbiology. 11: 1952.
Bobos, І., Fedosy, I., Zavadska, O., Tonha, O., and Olt, J. (2019). Optimization of plant densities of dolichos (dolichos lablab L. var. lignosus) bean in the Right-bank of Forest-steppe of Ukraine. Agronomy Research. 17(6): 2195-2202.
Carciochi, W.D., Schwalbert, R., Andrade, F.H., Corassa, G.M., Carter, P., Gaspar, A.P., and Ciampitti, I. A. (2019). Soybean seed yield response to plant density by yield environment in North America. Agronomy Journal, 111(4): 1923-1932.
Collini, E. (2019). Carotenoids in photosynthesis: the revenge of the “accessory” pigments. Chem. 5(3): 494-495.
Daba, N.A., and Sharma, J. (2018). Assessment of integrated weed management practices on weed dynamics, yield components and yield of faba bean (Vicia faba L.) in Eastern Ethiopia. Turkish Journal of Agriculture-Food Science and Technology, 6(5): 570-580.
Etesami, H., and Adl, S. M. (2020). Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation. 147-203.
Gerhards, R., Andujar Sanchez, D., Hamouz, P., Peteinatos, G.G., Christensen, S., and Fernandez‐Quintanilla, C. (2022). Advances in site‐specific weed management in agriculture-A review. Weed Research. 62(2): 123-133.
Ghiasy-Oskoee, M., AghaAlikhani, M., Sefidkon, F., Mokhtassi-Bidgoli, A., and Ayyari, M. (2018). Blessed thistle agronomic and phytochemical response to nitrogen and plant density. Industrial crops and products. 122: 566-573.
Hafez, E.M., Osman, H.S., El-Razek, U.A.A., Elbagory, M., Omara, A.E.D., Eid, M.A., and Gowayed, S.M. (2021). Foliar-applied potassium silicate coupled with plant growth-promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water in salt-affected soil. Plants. 10(5): 894.
Hashimoto, H., Uragami, C., and Cogdell, R. J. (2016). Carotenoids and photosynthesis. Carotenoids in nature. 111-139.
Ha-Tran, D.M., Nguyen, T.T.M., Hung, S.H., Huang, E., and Huang, C.C. (2021). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences. 22(6): 3154.
Jabborova, D., Kannepalli, A., Davranov, K., Narimanov, A., Enakiev, Y., Syed, A., and Gafur, A. (2021). Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Scientific reports. 11(1): 1-9.
Jones, J.R., Wolf, J. B., and Mills, H. A. )1991(. Plant Analysis: A Practical Sampling, Preparation, Analysis and Interpretation Guide. Micro and Macro Publishing Inc. Athens, Georgia.
Junior, C.A.S., D'Amico‐Damião, V., and Carvalho, R. F. (2021). Phytochrome type B family: The abiotic stress responses signaller in plants. Annals of Applied Biology. 178(2): 135-148.
Kalyanasundaram, G.T., Syed, N., and Subburamu, K. (2021). Recent developments in plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. Recent Developments in Applied Microbiology and Biochemistry. 2: 181-192.
Khan, A., Wang, L., Ali, S., Tung, S.A., Hafeez, A., and Yang, G. (2017). Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field crops research. 214: 164-174.
Khan, N., Bano, A., Shahid, M.A., Nasim, W., and Babar, A. (2018). Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition. Biologia. 73(11): 1083-1098.
Kumari, P., Meena, M., Gupta, P., Dubey, M.K., Nath, G., and Upadhyay, R. S. (2018). Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatalysis and agricultural biotechnology. 16: 163-171.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology. 148: 350-382.
Little, N.G., DiTommaso, A., Westbrook, A.S., Ketterings, Q.M., and Mohler, C.L. (2021). Effects of fertility amendments on weed growth and weed–crop competition: a review. Weed Science. 69(2): 132-146.
Liu, J., Zhang, J., Zhu, M., Wan, H., Chen, Z., Yang, N., and Liu, F. (2022). Effects of Plant Growth Promoting Rhizobacteria (PGPR) Strain Bacillus licheniformis with Biochar Amendment on Potato Growth and Water Use Efficiency under Reduced Irrigation Regime. Agronomy. 12(5): 1031.
Mansour, E., Mahgoub, H.A., Mahgoub, S.A., El-Sobky, E.S.E., Abdul-Hamid, M.I., Kamara, M.M., and Desoky, E.S.M. (2021). Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Scientific reports. 11(1): 1-20.
Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of natural medicines. 74(1): 1-16.
Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Tripathi, Y.N., Zehra, A., and Upadhyay, R.S. (2020). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology. 60(10): 828-861.
Niu, L., Yan, Y., Hou, P., Bai, W., Zhao, R., Wang, Y., and Zhou, W. (2020). Influence of plastic film mulching and planting density on yield, leaf anatomy, and root characteristics of maize on the Loess Plateau. The Crop Journal. 8(4): 548-564.
Oveisi, M., Kaleibar, B.P., Mashhadi, H.R., Müller-Schärer, H., Bagheri, A., Amani, M., and Masoumi, D. (2021). Bean cultivar mixture allows reduced herbicide dose while maintaining high yield: A step towards more eco-friendly weed management. European Journal of Agronomy. 122: 126173.
Pagnani, G., Galieni, A., Stagnari, F., Pellegrini, M., Del Gallo, M., and Pisante, M. (2020). Open field inoculation with PGPR as a strategy to manage fertilization of ancient Triticum genotypes. Biology and Fertility of Soils. 56(1): 111-124.
Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B., and Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers. 2:1-20.
Perez, R.P., Fournier, C., Cabrera‐Bosquet, L., Artzet, S., Pradal, C., Brichet, N., and Tardieu, F. (2019). Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection. Plant, cell & environment. 42(7): 2105-2119.
Poornima, S., Lakshmi, Y.S., Prakash, T.R., and Srinivas, A. (2018). Weed management through early post-emergence herbicides to improve productivity and nutrient uptake in greengram. Indian Journal of Weed Science. 50(1): 82-84.
Prażak, R., Święciło, A., Krzepiłko, A., Michałek, S., and Arczewska, M. (2020). Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture. 10(8): 312.
Raheem Lahmod, N., Talib Alkooranee, J., Gatea Alshammary, A.A., and Rodrigo-Comino, J. (2019). Effect of wheat straw as a cover crop on the chlorophyll, seed, and oilseed yield of Trigonella foeunm graecum L under water deficiency and weed competition. Plants. 8(11): 503.
Rahneshan, Z., Nasibi, F., Lakehal, A., and Bellini, C. (2018). Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes. Acta physiologiae plantarum. 40(9): 1-13.
Rezaei-Chiyaneh, E., Amirnia, R., Machiani, M.A., Javanmard, A., Maggi, F., and Morshedloo, M.R. (2020). Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Scientia Horticulturae. 261: 108951.
Roslim, M.H.M., Juraimi, A.S., Che’Ya, N.N., Sulaiman, N., Manaf, M.N.H.A., Ramli, Z., and Motmainna, M. (2021). Using remote sensing and an unmanned aerial system for weed management in agricultural crops: A review. Agronomy. 11(9): 1809.
Saleh, S., Liu, G., Liu, M., Ji, Y., He, H., and Gruda, N. (2018). Effect of irrigation on growth, yield, and chemical composition of two green bean cultivars. Horticulturae. 4(1): 3.
Sandmann, G. (2021). Diversity and origin of carotenoid biosynthesis: Its history of coevolution towards plant photosynthesis. New Phytologist. 232(2): 479-493.
Sims, B., Corsi, S., Gbehounou, G., Kienzle, J., Taguchi, M., and Friedrich, T. (2018). Sustainable weed management for conservation agriculture: Options for smallholder farmers. Agriculture. 8(8): 118.
Smith, M.R., Rao, I.M., and Merchant, A. (2018). Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in Plant Science. 9: 1889.
Talebzadeh, F., and Valeo, C. (2022). Evaluating the Effects of Environmental Stress on Leaf Chlorophyll Content as an Index for Tree Health. In IOP Conference Series: Earth and Environmental Science. 1006(1): 012007.
Tirry, N., Kouchou, A., El Omari, B., Ferioun, M., and El Ghachtouli, N. (2021). Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). Journal of Genetic Engineering and Biotechnology. 19(1): 1-14.
Tung, S.A., Huang, Y., Ali, S., Hafeez, A., Shah, A.N., Song, X., and Yang, G. (2018). Mepiquat chloride application does not favor leaf photosynthesis and carbohydrate metabolism as well as lint yield in late-planted cotton at high plant density. Field Crops Research. 221: 108-118.
Uarrota, V.G., Stefen, D.L.V., Leolato, L.S., Gindri, D.M., and Nerling, D. (2018). Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In Antioxidants and antioxidant enzymes in higher plants. 207-232.
Waling, I., Vark, W. V., Houba, V. J. G., and Vanderlee, J. J. )1989(. Soil and Plant Analysis, A series of syllabi. Part 7. Plant Analysis Procedures. Wageningen Agriculture University, Netherland. 168p.
Valetti, L., Iriarte, L., and Fabra, A. (2018). Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. Applied Soil Ecology. 132: 1-10.
Yuan, W.A.N.G., Wenqing, L.I., Binghai, D.U., and Hanhao, L.I. (2021). Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato. Pedosphere. 31(6): 872-881.
Zhang, D., Sun, Z., Feng, L., Bai, W., Yang, N., Zhang, Z., and Zhang, L. (2020). Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Research. 257: 107926.
Zhang, G., Shen, D., Ming, B., Xie, R., Jin, X., Liu, C., and Li, S. (2019). Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China. The Crop Journal. 7(3): 322-334.
