مقایسه مدل های تجربی، رگرسیونی و شبکه عصبی مصنوعی در برآورد تابش خالص دریافتی(Rs) در ایستگاه سینوپتک زاهدان
محورهای موضوعی :
اقلیم شناسی
پریسا کهخا مقدم
1
,
محمد مهدی چاری
2
1 - عضو هیئت علمی گروه مهندسی آب دانشگاه زابل،زابل،ایران
2 - عضو هیئت علمی گروه مهندسی آب دانشگاه زابل،زابل،ایران
تاریخ دریافت : 1395/04/08
تاریخ پذیرش : 1396/02/09
تاریخ انتشار : 1395/12/29
کلید واژه:
شبکه عصبی,
زاهدان,
تابش خالص دریافتی,
گاما تست,
چکیده مقاله :
تابش خورشیدی در بسیاری از مدلهای هیدرولوژی به عنوان پارامتری مهم در تخمین تبخیر و تعرق می باشد. تهیه و ایجاد وسایل انداره گیری این پارامتر بسیار پرهزینه می باشد. در این تحقیق از داده های اندازه گیری شده تابش (Rs) در سال های 1385 تا 1389 ایستگاه هواشناسی زاهدان استفاده شده است. در این تحقیق چند مدل غیرخطی نظیر شبکه عصبی با الگوریتم BFGS و شبکه عصبی با کاهش شیب توام و رگرسیون خطی محلی با استفاده از آزمون گاما توسعه داده شد. سپس این مدل های غیرخطی و دو مدل تجربی شامل آنگستروم-پرسکات و گلور مک کلوت برای پیش بینی تابش مورد ارزیابی قرار گرفت. از پارامترهای دمای ماکزیمم، سرعت متوسط باد و تابش برون زمینی و ساعت آفتابی برای پیش بینی روش های غیر خطی استفاده شد. نتایج مقایسه مقادیر محاسبه شده با مدل ها با مقادیر اندازه گیری شده توسط پیرانومتر نشان می دهد که شبکه عصبی با روند نما BFGS دارای 95/1 RMSE= ، 47/1 MAE= و 93/0= R2 است که دارای بهترین عملکرد در مدل ها می باشد. بعد از آن مدل شبکه عصبی با کاهش شیب توام و مدل رگرسیونی خطی محلی است که مقادیر RMSE، MAE و R2برای آنها به ترتیب برابر 53/2، 77/1، 88/0 و 89/2، 89/1، 82/0 می باشد. روش انگستروم و گلور-مک کلوت نیز به ترتیب دارای مقادیر 38/4RMSE= ، 21/3 MAE= ، 33/0= R2 و 64/4RMSE= ، 07/3 MAE= و 50/0= R2می باشند.
چکیده انگلیسی:
Solar radiation is one of the key inputs for most hydrological models in estimating reference evapotranspiration. Furthermore providing and making the measurement tools for this parameter is very costly. In this research, ridation (Rs ) of zahedan meteological station in 1385 to 1389 were used. Some non- linear models such as neure systemwith algorithm BFGS, and neure system with conjugate Gradient training algorithms, and locallinear regression through gamma test were developed. Then , these non- linear models and two expereimental model including Angstrom - Prescott and Glory Mac Kalut were assessed for predicting radiation. For predicting none- linear method, maximum temperature parameters, average speed of wind, surface radiation, and Sunshine were used. Result of comparing measured amounts with models with measured amount by parameter show that the neure system with BFGS algorithm has RMSE= 1.95 , MAE= 1.47 and R2=93% which are the best operation in these models. After that, neure system model with conjugate Gradient training algorithms and local regression model are in secand rank in which RMSE, MAE and R2 are 2.53 , 1.77 , 88% and 2.89 , 1.89 , 82% respectively. Angstrom and MAC colt method have RNSE = 4.38 , MAE=3.21 , R2=33% and RMSE= 4.46, MAE= 3.07, R2=50% respectivety.
منابع و مأخذ:
پیری، جمشید. انصاری ،حسین. فریدحسینی، علیرضا (1392): مدلسازی تابش خورشید رسیده به زمین با استفاده از (ANFIS) و مدلهای تجربی (مطالعه موردی: ایستگاههای زاهدان و بجنورد) نشریه انرژی ایران ،دوره 16 شماره 3 پاییز، صص 37-85.
خلیلی، علی. رضایی صدر، حسین (1376)، برآورد تابش کلی خورشید در گستره ایران بر مبنای دادههای اقلیمی، فصلنامه تحقیقات جغرافیایی، شماره 46، صص 15 تا 35.
سبزی پرور، علیاکبر. بیات ورکشی، مریم (1389)، ارزیابی دقت روش های شبکه عصبی مصنوعی و عصبی- فازی در شبیه سازی تابش کل خورشیدی، مجله پژوهش فیزیک ایران، جلد 10، شماره 4 ، صص 347 تا 357.
موسوی بایگی، محمد. اشرف، بتول. میان آبادی، آمنه (1389): بررسی مدلهای مختلف برآورد تابش خورشیدی به منظور معرفی مناسبترین مدل در یک اقلیم نیمه خشک، مجله آب و خاک، جلد 24، شماره 4، صص 844-836.
قویدل حیدری، عباس (1385): بررسی توان بالقوه انرژی خورشیدی در استان سیستان و بلوچستان، پایان نامه کارشناسی ارشد.
_||_
Agalbjörn S, Končar N, Jones AJ.(1997): A note on the gamma test. Neural Computing and Applications, 5(3):131–133. ISSN 0-941-0643.
Allen R. (1995): Evaluation of procedures of estimating mean monthly solar radiation from air temperature. FAO, Rome.
Angstrom A. (1924): Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society 50: 121–125.
Azadeh A, Maghsodi A, Sohrabkhani S, (2009): An integrated artificial neural networks approach for predicting global radiation. Energy conversion and management. 50:1479-1505.
Bosch JL, Lopes G and Batlles FJ, (2008): Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renewable Energy. 33: 1622-1628
Chuzhanova NA, Jones AJ, Margetts S . (1998): Feature selection for genetic sequence classification. Bioinformatics 14(2): 139–143.
Dinçer I, Dilmaç S, Türe IE, Edin M. (1996): Simple technique for estimating solar radiation parameters and its application for Gebze. Energy Conversion and Management. 37(2): 183–198.
Durrant PJ. (2001): winGamma: A non-linear data analysis and modelling tool with applications to flood prediction. PhD thesis, Department of Computer Science, Cardiff University, Wales, UK.
Fletcher R. (1987): Practical methods of optimization (2nd ed.). New York: Wiley.
Jain, S.K., A. Das, and D.k. Srivastsva. (1999): Application of ANN for reservoir inflow prediction and operation, Journal of water Resources planning and Management, ASCE,125(5):263-271
Jones A J . (2004): New tools in non-linear modelling and prediction. Computational Management Science. 1: 109–149.
Jones A J, Tsui A, de Oliveira AG . (2002): Neural models of arbitrary chaotic systems: construction and the role of time delayed feedback in control and synchronization. Complexity International Vol 09
Moghaddamnia, A., Remsan, R., Hassanpour Kashani, M., Mohammadi, M. Han, D Piri, J. (2009): Comparison of LLR, MLP, Elman, NNARX and ANFIS model- with a case study in solar radiation estimation. Journal of Atmospheric and Solar- Terrestrial Physics, 71, 975–982.
Mohandes M, Balchonaim A, Rehman KS, Halawani TO. (1998): Estimation of global solar radiation using artificial neural networks. Renewable Energy 14(1–4): 179–184. doi:10.1016/S0960-1481(98)00065-2
Noia M, Ratto CF, Festa R. (1993a): Solar irradiance estimation from geostationary satellite data. I. Statistical models Solar Energy 51(6):.449-456.
Ogulata RT, Ogulata, SN. (2002): Solar radiation on Adana, Turkey. Applied Energy 71(4): 351–358.
Penrose, R. (1955): A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society 51, 406–413.
Penrose R. (1956): On best approximate solution of linear matrix equations. Proceedings of the Cambridge Philosophical Society, 52:17–19.
Piri J., Shamshirband S., Petkovic´D., Tong CW., Rehman MH. (2015):Prediction of the solar radiation on the Earth using support vectorregression technique. Infrared Physics & Technology. 68: 179–185.
Remesan, R., Shamim, M.A., Han, D. (2008): Model data selection using Gamma test for daily solar radiation estimation. Hydrological Processes 22 (21), 4301–4309.
Saylan L, Sen O, Toros H, Arısoy A. (2003): Solar energy potential for heating cooling systems in big cities of Turkey. Energy Conversion and Management 43(14): 1829–1837.
Shamshirband S., Mohammadi K., Piri J., Petkovic D., Karim A. (2016): Hybrid auto-regressive neural network model for estimating global solar radiation in Bandar Abbas, Iran. Environ Earth Science, 75(172): 1-12.
Tan,.S.B.K, Shuy, E.B. and Chua, L.H.C, (2007): Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate, Hydrological Processes, 21(486-499), DOI: 10.1002/hyp.6251
Tovar HF, Baldasano JM. (2001): Solar radiation mapping from NOAA AVHRR data in Catalonia, Spain. Journal of Applied Meteorology 40:1821-1834.
Tsui APM . (1999): Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London
Tsui APM, Jones AJ. de Oliveira AG .(2002): The construction of smooth models using irregular embeddings determined by a gamma test analysis. Neural Computing and Applications 10(4):318–329.
Tymvios FS, Jacovides CP, Michaelides SC, Scouteli C, (2005): Comparative study of Angstrom ‘s and artificial neural networks methodologies in estimating global solar radiation: Sol Energy. 78: 752-762.
w Roman","serif";mso-bidi-font-family:"B Lotus"; mso-bidi-language:FA'>
قویدل حیدری، عباس (1385): بررسی توان بالقوه انرژی خورشیدی در استان سیستان و بلوچستان، پایان نامه کارشناسی ارشد.