بررسی تغییرات دمایی سواحل جنوبی دریای خزر با استفاده از سه مدل LARSWG،SDSM و مدل شبکه عصبی مصنوعی
محورهای موضوعی :
اقلیم شناسی
الهام قاسمی فر
1
,
بهلول علیجانی
2
,
محمد سلیقه
3
1 - دانشجوی دکترا آب و هواشناسی ماهواره ای، دانشگاه تربیت مدرس،تهران،ایران.
2 - استادآب و هواشناسی و مدیر قطب علمی تحلیل فضایی مخاطرات محیطی، دانشگاه خوارزمی،تهران،ایران.
3 - دانشیارآب و هواشناسی و عضو قطب علمی تحلیل فضایی مخاطرات محیطی، دانشگاه خوارزمی،تهران،ایران.
تاریخ دریافت : 1395/08/28
تاریخ پذیرش : 1396/03/13
تاریخ انتشار : 1395/12/29
کلید واژه:
سواحل جنوبی دریای خزر,
تغییرات اقلیمی,
دمایحداقل,
دمایحداکثر,
مدل های ریزمقیاس سازی,
چکیده مقاله :
تغییرات اقلیمی که عمدتا منشأ انسانی دارد، پدیدهای است که طی 150سال اخیر بشر را تهدید میکند. سواحل دنیا یکی از آسیب پذیرترین نقاطی هستند که از این پدیده به شدت دگرگون شده اند. تحقیق حاضر میزان تغییرات دمای حداقل و حداکثر برای پنج ایستگاه سواحل جنوبی دریای خزر شامل انزلی، رشت، بابلسر، رامسر و گرگان را با استفاده از دو مدل LARS_WG, SDSM و یک مدل شبکه عصبی مصنوعی، طی دوره اقلیمی پایه 1990-1961 و آینده 2039- 2010 با استفاده از سه سناریوی A2,B2 وB1 مورد بررسی قرار داده است. نتایج حاصل از این پژوهش نشان داد دما طی دوره آماری 1990-1961 افزایش داشته است و هر پنج ایستگاه مورد بررسی دستخوش این تحول و دگرگونی شده اند. بر اساس نتایج مدل LARS_WG ، طی دوره آماری آینده، افزایش دما تا یک درجه سانتیگراد برای همه ی ماهها و هر پنج ایستگاه تشخیص داده شد اما مدل SDSM علاوه بر افزایش دما طی دوره ی آینده (حدود یک درجه سانتیگراد و گاهی بیشتر)، حاکی از کاهش دما برای ایستگاهها در ماههای آوریل، می و نوامبر بود. مدل شبکه عصبی مصنوعی همانند مدل SDSM نشان داد دما برای ایستگاهها و همهی ماهها به جز ماههای آوریل، می و نوامبر افزایش خواهد داشت. مقایسه ی نتایج مدل ها نشان داد که خطای مدل SDSM ( 01/0تا 06/0 درجه سانتیگراد) کمتر از مدل های دیگر است، مدل LARS_WG بعد از مدل SDSM کمترین خطا را داشته است و سپس مدل شبکه عصبی مصنوعی قرار می گیرد. همچنین دو آزمون ویلککسون و کلموگروف اسمیرنوف که به ترتیب برای میانگین و واریانس دو سری بکار گرفته شد مشخص کرد مدل SDSM مقادیر P بالای سطح معنی دار 0.05 دارد. در نتیجه صحت محاسبات مدل SDSM بیشتر است و با اطمینان بیشتری میتوان به نتایج آن اعتماد کرد.
چکیده انگلیسی:
Introduction Average surface temperatures of the Northern Hemisphere have risen in response to climate change by 0.76°C over the past 150 years (IPCC, 2007) .These temperature increases have been accompanied by a reduction in snow and ice cover, retreat of sea ice and mountain glaciers, a longer growing season and earlier arrival of spring, increased frequency of extreme rainfall events, and more than 25,000 other changes in physical and biological indicators of global warming (Rosenzweig et al., 2008). Numerical models have used in such research after the late of year 1970s. The downscaling software such as SDSM,LARS_WG and ANN (Artificial Neural Network) became very common in the recent decades(e.g. Khan, et al., 2006).The results have showed that the SDSM is the most capable of reproducing various statistical characteristics of observed data in its downscaled results with 95% confidence level, the ANN is the least capable in this respect, and the LARS-WG is in between SDSM and ANN. According to Lopes et al (2008) in Assessment of climate change in Lisbon, the SDSM tool was able to better represent the minimum and maximum temperature whereas LARS-WG simulations is slightly better for precipitation. Material and methods This research has used downscaled methods for the minimum and maximum temperatures of five stations including Anzali, Rasht, Babolsar, Ramsar and Gorgan in the southern coastal of the Caspian sea by three models namely LARS-WG, SDSM and ANN during 1961-90 and 2010-2039 period under three scenarios of A1 , A2 , And B2 . For this purpose, first the observed data of 1961-90 period were obtained from Meteorological Organization of Iran. Since GCMs are restricted in their usefulness for local impact studies with their coarse spatial resolution (typically 50,000 km2) and inability to resolve important sub–grid scale features such as clouds and topography, the three downscaling models namely SDSM, LARS_WG and ANN were used to downscaling these coarse data. Two GCM data were obtained from the website: http://www.cics.uvic.ca/scenarios/index.cgi?Scenarios. Root Mean square error (RMSE), Mean absolute error (MAE) and Coefficient of determination ( ) were used to assessing the capability of the models. Result and discussions SDSM model results showed very small error ( 0.01 to 0.06°C) between observed and generate data using NCEP predictors-based data with a little more discrepancy using HADCM3 predictors-based data . The model output showed minimum and maximum temperature will rise during the future period with the exception of the months including April ,May and November. This warming trend was same for ANN with error range of 0.2 to 0.8°C. LARS-WG simulation showed temperature will rise for all months of the year with the error range of 0.1 to 0.2°C. The comparison betweem three models showed that the SDSM tool was able to better represent the minimum and maximum temperature. Conclusion According to this study the temperature increased during the target period. Temperature will increase during future period too.The SDSM and ANN model showed decrease in the temperature of the months including April, May and November. But the LARS_WG showed increase in the temperature in all month and all stations. The comparison of the models showed that the SDSM model has recorded the lowest error in the predicting of future temperatures.
منابع و مأخذ:
اشرف،بتول، محمدموسوی بایگی، غلامعلی کمالی و کامران داوری،(1390): پیش بینی تغییرات فصلی پارامترهای اقلیمی در 20سال آتی با استفاده ازریز مقیاس نمایی آماری داده های مدلHADCM3 (مطالعه ی موردی استان خراسان رضوی)، نشریه ی آب و خاک(علوم و صنایع کشاورزی) ،25،شماره4: 957-945.
باباییان،ایمان، زهرا نجفی بیک، فاطمه زابل عباسی، مجیدحبیبی نوخندان، حامد ادب و شراره ملبوسی،( 1388):ارزیابی تغییر اقلیم کشور در دوره ی 2039-2010میلادی با استفاده از ریز مقیاس نمایی داده های مدل گردش عمومی جو ECHO-G،مجله جغرافیا و توسعه،شماره16: 152-135.
سبحانی، ب، مهدی اصلاحی و ایمان بابائیان، (1394):کاراییالگوهایریزمقیاسنماییآماریSDSM و LARS-WG درشبیهسازیمتغیرهایهواشناسیدرحوضةآبریزدریاچةارومیه، پژوهش های جغرافیای طبیعی، دورة 47 ، شمارة 4، 499-516.
عباسی،فاطمه، شراره ملبوسی، مجید حبیبی نوخندان و مرتضی اثمری،(1389): ارزیابی تغییر اقلیم زاگرس در دوره 2039- 2010 میلادی با استفاده از ریز مقیاس نمایی داده های مدل گردش عمومی جوECHOG،نشریه پژوهش های اقلیم شناسی،سال اول،شماره1-2: 20-3.
مساح بوانی،علیرضا و علیرضا مرید، (1384):اثرات تغییر اقلیم بر جریان رودخانه زاینده رود اصفهان،نشریه علوم و فنون کشاورزی و منابع طبیعی،سال نهم،شماره4: 27-17.
_||_
Abbasnia,M., Tavousi,T., Khosravi,M.(2016):Assessment of Future Changes in the Maximum Temperature at Selected Stations in Iran Based on HADCM3 and CGCM3 Models, Asia-Pac. J. Atmos. Sci., 52(4), 371-377, DOI:10.1007/s13143-016-0006-z.
Abbasnia,M.,Toros,H.(2016): Future changes in maximum temperature using the statistical downscaling model (SDSM) at selected stations of Iran, Model. Earth Syst. Environ. (2016) 2:68 DOI 10.1007/s40808-016-0112-z.
Cheema,S,B.,Rasul, Gh., Ali, G., Kazmi, D.H.(2012): A Comparison of Minimum Temperature Trends with Model Projections,Pakistan Journal of Meteorology,Vol.8, issue15,pp.39-52.
Chu, J. T., Xia, J., Xu, C. Y., Singh, V. P.(2010): Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China,Theor Appl Climatol,Vol.99,issue1-2,pp.149-161.
Dorji,S., Herath,S., Mishra,B.K.,(2017):Future Climate of Colombo Downscaled with SDSM-Neural Network, Climate 2017, 5, 24; doi:10.3390/cli5010024.
Gagnon,S., Singh, B., Rousselle, J., Roy, L.(2005): An Application of the Statistical DownScaling Model (SDSM) to Simulate Climatic Data for Streamflow Modelling in Québec, Canadian Water Resources Journal,Vol.30,No.4,pp.297-314.
Goodarzi ,E., Dastorani,M., Massah Bavani ,A., Talebi,A.,(2015): Evaluation of the Change-Factor and LARS-WG Methods of Downscaling for Simulation of Climatic Variables in the Future (Case study: Herat Azam Watershed, Yazd - Iran),ecopersia, 3 (1), 833-846.
Horton, E.B.( 1995): Geographical distribution of changes in maximum and minimum temperatures,Atmospheric Research, Vol.37, pp.102-117.
IPCC report,climate change.( 2007): Synthesis Report.
Karl,T.R.,Kukla,G.,Razuvayev,V.N.,Changery,M.J.,Quayle,R.G., Heim, R.R., Easterling, D.R.,Cong Bin Fu.(1991): Global warming: evidence for asymmetric diurnal temperature change,Geophysical Research Letters, Vol.18,issue12,pp.2253-2256.
Khadka,D.,Pathak,D.,(2016): Climate change projection for the marsyangdi river basin, Nepal using statistical downscaling of GCM and its implications in geodisasters, Geoenvironmental Disasters 3:15,DOI 10.1186/s40677-016-0050-0.
Khan, M.S., Coulibaly,P., Dibike,Y.(2006):Uncertainty analysis of statistical downscaling methods,Journal of Hydrology,Vol.319,pp.357-382.
Lapp, S., Sauchyn, D., Wheaton, E.( 2008):Future Climate Change Scenarios for the South Saskatchewan River Basin,pp.1-86.
Lüthi ,D., Floch, M. L., Bereiter, B., Blunier , Th., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, Th.F.( 2008):High-resolution carbon dioxide concentration record 650,000-800,000 years before present, Nature,Vol. 453, No. 7193,pp.379-382.
Lines ,G.S.,Pancura,M., Lander, CH.(2006): Building climate change scenarios of temperature and precipitation in Atlantic Canada using the statistical downscaling model (SDSM), Meteorological Service of Canada, AtlanticRegion ,Science Report Series 2005-9,pp.1-41.
Liu,P.,Xu,Z.,Li,X.,(2016): Projection of Climate Change Scenarios in Different Temperature Zones in the Eastern Monsoon Region, China, Water 2017, 9, 305; doi:10.3390/w9050305.
Lopes, P.G., Aguiar,R., Casimiro,E.(2008):Assessment of climate change statistical downscaling methods, Application and comparison of two statistical methods to a single site in Lisbon.
Mekonnen,D.F., Disse,M. (2016):Analyzing the future climate change of Upper Blue Nile River Basin (UBNRB) using statistical down scaling techniques, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-543, 2016
Morid,S.,Massah bavani,A.R.( 2005): Impact of Climate Change on the Water Resources of Zayandeh Rud Basin ,Journal of Sciences and Technology of Agriculture and Natural Resources,water and soil science,Vol.9,No.4,pp.17-27.
Mahmood,R.,Babel,M.,(2014): Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin, WeatherandClimateExtremes5-6(2014)56–66.
Mulugeta Bekele , H .(2009): Evaluation of Climate Change Impact on Upper Blue Nile Basin Reservoirs(Case Study on Gilgel Abay Reservoir, Ethiopia), A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Hydraulics and Hydropower Engineering of Arba-Minch University,supervisor,Dr.Ing Seleshi Bekele , Arba-Minch University School of Post Graduate Studies,pp.1-109.
Mutasa, C.(2011):impact of climate change on ground water resources:a case study of the Sardon catchment,spain،Thesis submit for the degree of master of science in geo information science and earth observation, supervisors,Dr.ir.M.W Lubczynski and Dr.ir.C.Van der Tol,university of Twente,pp.1-65.
Rosenzweig, C., Karoly,D., Vicarelli,M., Neofotis,P., Wu,Q., Casassa,G., Menzel,A., Root,T.L., Estrella,N.,Seguin,B.,Tryjanowski,P.,Liu,CH., Rawlins,S.,Imeson,A.(2008): Attributing physical and biological impacts to anthropogenic climate change,Nature,Vol.453,pp.353-358.
Sayad,T.A., Ali,A.M., Kamel,A.M.,(2016): Study the impact of climate change on maximum and minimum temperature over Alexandria , Egypt using statisrtical downscaling Model (SDSM), global journal of advanced research,3,8,694-712.
Souvignet,M., Gaese,H., Ribbe,L., Kretschmer,N., Oyarzún,R.(2010): Statistical downscaling of precipitation and temperature in north‐central Chile: an assessment of possible climate change impacts in an arid Andean watershed, Hydrol. Sci. J. 55(1), 41–57.
Semenov,M.A., LARS-WG A Stochastic Weather Generator for Use in Climate Impact StudiesDeveloped by Mikhail A. Semenov.Version 3.0,User Manual.( 2002) .
Task Group on Scenarios for Climate Impact Assessment Intergovernmental Panel on Climate Change,June (2007): General Guidelines on the use of scenario data for climate impact and adaptation assessment,Version 2.
U.S.climate change science program,synthesis and assessment product 3/1., july (2008):Climate Models an assessment of strenghts and limitations.
Wilby, R.L., Dawson,C.W., Barrow,E.M.(2001): sdsm — a decision support tool for the assessment of regional climate change impacts, Environmental Modelling & Software,Vol.17,pp.147-159.
Wetterhal,F., Bardossy,A., Chen,D., Halldin,S., Yu Xu,CH.(2006): Daily precipitation-downscaling techniques in three Chinese regions, Water resources research,Vol.42,W11423,13pp.
Wilby, R. L., Dawson,C.W.(2007): SDSM 4.2 — A decision support tool for the assessment of regional climate change impacts, User Manual.