ارتقاء مدلسازی هیبرید با استفاده از مدلی کارآمد جهت پیشبینی بارندگی
محورهای موضوعی : اقلیم شناسی
1 - دانشیار دانشکده کشاورزی دانشگاه شهید مدنی آذربایجان، تبریز، ایران
کلید واژه: ترکیب, هیبرید, بارندگی, غیرخطی,
چکیده مقاله :
پیش بینی بارندگی با دقت کم منجر به ضررهای قابل توجه در بخش های مختلف مانند کشاورزی، محیط زیست می شود. در این راستا تأثیر مدل های رگرسیون بردار پشتیبان (SVR)، برنامه ریزی بیان ژن (GEP) وروش گروهی مدل سازی داده ها (GMDH) در ارتقاء عملکرد مدل هیبرید مورد بررسی قرار گرفت که از داده های بارندگی ایستگاه های ارومیه و اصفهان با دو اقلیم متفاوت در بازه زمانی 1964-2019 استفاده شد. در مدل سازی بخش غیرخطی، ترکیب سوم با ترکیب بخش خطی، باقی مانده ها و داده های مشاهداتی در گام زمانی پیشین خطای کمتری داشت، به عنوان نمونه در ایستگاه اصفهان میزان کاهشRMSE از ترکیب 1 به 3،73/62 و میزان کاهش SMAPE از ترکیب 2 به 3 برابر با 79/62 درصد بود. مدل هیبرید نسبت به مدل استوکستیکی دارای عملکرد بهتری بود، به طوری که مقدار RMSE از مدل استوکستیکی به مدل هیبرید با SVR، GEP و GMDH در ایستگاه ارومیه به ترتیب 46/79، 34/68 و 77/75 درصد کاهش داشت. مدل برنامه ریزی بیان ژن نسبت به سایر مدل های مورد مطالعه دقت کمتری داشت (در ایستگاه ارومیه میزان کاهش UIIاز مدل GEP به SVR به ترتیب برابر با 5/32 و 62/15 درصد و در ایستگاه اصفهان میزان افزایش ضریب نش-ساتکلیف از مدل GEP به GMDH برابر با 38/22 بود). میزان ضریب نش-ساتکلیف در هر سه مدل در ایستگاه ارومیه بیشتر از اصفهان بود( متوسط میزان کاهش ضریب نش-ساتکلیف از ایستگاه ارومیه به اصفهان 22/6 درصد بود) ولی مقدار ضریب در هر دو ایستگاه در محدوده قابل قبول است. بنابراین انتخاب مدل کارا با ترکیب درست در مدل سازی بخش غیرخطی تأثیر چشمگیری در افزایش کارایی مدل هیبرید خواهد داشت.
Low-precision rainfall forecasting leads to significant losses in various sectors such as agriculture and the environment. In this regard, the effect of support vector regression (SVR), gene expression programming (GEP) and group data modeling (GMDH) models on improving the performance of the hybrid model was examined, which is based on station rainfall data. Urmia and Isfahan with two different climates were used in the period 1964-2019. In nonlinear section modeling, the third combination with the linear section combination, residuals and observational data in the previous time step had less error, for example in Isfahan station, the rate of RMSE reduction from combination 1 to 3.73 / 62 And the rate of SMAPE reduction from 2 to 3 was equal to 62.79%. The hybrid model had better performance than the stochastic model, so that the amount of RMSE from the stochastic model to the hybrid model with SVR, GEP and GMDH at Urmia station decreased by 79.46, 68.34 and 75.77%, respectively. . The gene expression programming model was less accurate than the other models studied (in Urmia station, the rate of UII reduction from GEP to SVR model was 32.5 and 15.62%, respectively, and in Isfahan station, the rate of increase in Nash coefficient was Sutcliffe from GEP to GMDH was 22.38). The amount of Nash-Sutcliffe coefficient in all three models in Urmia station was higher than Isfahan (the average rate of decrease in Nash-Sutcliffe coefficient from Urmia station to Isfahan was 6.22%) but the value of coefficient in both stations is within acceptable range. Therefore, choosing an efficient model with the right combination in nonlinear modeling will have a significant effect on increasing the efficiency of the hybrid model.
1- برجی حسن گاویار، م. مقدم نیا، ع؛ و ساجدی، ف)1396(: بررسی کارایی دو روش داده محور در پیشبینی بارندگی ماهانه، پژوهشهای دانش زمین، شماره سی و یکم 31، صص 42-61.
2- پورنعمت رودسری، ع. قادری، ک؛ و کریمی گوغری، ش (1393): مدلسازی فرآیند بارش-رواناب با استفاده از روش کنترل گروهی دادهها (GMDH) و شبکههای عصبی مصنوعی (ANN) در حوضه آبخیز پلرود، پژوهشنامه مدیریت حوضه آبخیز، شماره دهم، صص 84- 68.
3- سلگی، ا. زارعی، ح. شهنی دارابی، م؛ و علیدادی ده کهنه، ص (1397): پیشبینی بارش ماهانه با استفاده از مدلهای برنامهریزی بیان ژن و ماشین بردار پشتیبان، نشریه تحقیقات کاربردی علوم جغرافیایی، شماره پنجاه، صص 91- 103.
4- سلگی، ا. زارعی، ح. وگلابی، م.ر (1396): بررسی عملکرد مدل برنامهریزی بیان ژن با روشهای پیشپردازش دادهها جهت مدلسازی جریان رودخانه، پژوهشهای حفاظت آب و خاک، شماره دو، صص 185-201.
5- شرفی، م. صمدیان فرد، س؛ و هاشمی، س. (1399): پیشبینی بارش ماهانه با استفاده از مدلهای برنامهریزی ژنتیک و ماشین بردار پشتیبان، سامانههای سطوح آبگیر باران، دوره هشت، صص 63-71.
6- Acosta, S.M. Amoroso, A.L. Sant’ Anna, Â.M.O. And Junior, O.C. (2021): Predictive Modeling In A Steelmaking Process Using Optimized Relevance Vector Regression And Support Vector Regression. Annals Of Operations Research, P.1-22.
7- Ahmadi, F. Mehdizadeh, S. Mohammadi, B. Pham, Q. B. Doan, T. N. C. And Vo. N. D. (2021):Application Of An Artificial Intelligence Technique Enhanced With Intelligent Water Drops For Monthly Reference Evapotranspiration Estimation: Agricultural Water Management, V. 244, 106622.
8- Chen, W. Xu, H. Chen, Z. And Jiang, M. (2021): A Novel Method For Time Series Prediction Based On Error Decomposition And Nonlinear Combination Of Forecasters: Neurocomputing, V. 22, P. 85-103.
9- Chen, S.T. Yu, P.S. And Tang, Y.H. (2010): Statistical Downscaling Of Daily Precipitation Using Support Vector Machines And Multivariate Analysis: Journal Of Hydrology, V. 385, P. 13-22.
10- Chen, K.Y. And Wang, C.H. (2007): A Hybrid SARIMA And Support Vector Machines In Forecasting The Production Values Of The Machinery Industry In Taiwan: Expert Systems With Applications, V. 32, P. 254-64.
11- Danandeh Mehr, A. (2018): An Improved Gene Expression Programming Model For Streamflow Forecasting In Intermittent Streams: Journal Of Hydrology, V.563, P. 669-78.
12- Kalteh, A.M. 2017: Enhanced Monthly Precipitation Forecasting Using Artificial Neural Network And Singular Spectrum Analysis Conjunction Models: INAE Letters, V.2, P.73-81.
13- Mislan, M. Haviluddin, H
_||_