طراحی مدل ارزیابی تابآوری زنجیره تامین با رویکرد تحلیل پوششی دادههای شبکهای (مورد مطالعه: بیمارستانهای دولتی استان یزد)
محورهای موضوعی : مدیریت(تحقیق در عملیات)محسن شفیعی نیک آبادی 1 , فرشته بهرامی 2
1 - دانشیارگروه مدیریت صنعتی، دانشگاه سمنان، سمنان، ایران
2 - دانشجوی دکتری گروه مدیریت صنعتی، دانشگاه سمنان، سمنان، ایران
کلید واژه: ارزیابی عملکرد, تابآوری, زنجیره تامین بیمارستان, تحلیل پوششی دادههای شبکهای,
چکیده مقاله :
بیمارستان به عنوان یکی از مهمترین نهادهای ارائه دهنده خدمات بهداشتی و درمانی نقش مهمی را در بازگشت سلامت جسمی و روانی جامعه دارد لذا اعمال مدیریت کارآمد در زمان وقوع بحران میتواند در عملکرد مطلوب و بهینه این نهاد تأثیر بسزایی داشته باشد. بیمارستانهای تاب آور با ارائه خدمات مورد نیاز در هنگام حوادث و بلایا نقش حیاتی در کاهش مرگ و میر و شدت جراحات دارند. لذا این پژوهش با هدف" طراحی مدل ارزیابی تابآوری زنجیره تامین بیمارستانهای دولتی استان یزد با رویکرد تحلیل پوششی شبکهای" انجام شده است. این پژوهش از نظر هدف، کاربردی و از نظر نوع روش یک مطالعه توصیفی- پیمایشی است. دادهها از طریق بررسی مقالات نظرات خبرگان حوزه سلامت گردآوری گردیده است .تحلیل دادهها با استفاده از تحلیل پوششی داههای شبکهای چند مرحلهای انجام گرفته است. با حل مدل ریاضی درصد کارایی هریک از بیمارستانها بدست آمده است سپس واحدهای کارا و ناکارا مشخص گردیده و در نهایت با توجه به نتایج حاصل از تحلیل پوششی دادهها به تحلیل حساسیت دادهها پرداخته شده است.نتایج حاصل از تحلیل پوششی دادههای شبکهای ورودی محور نشان داده است که در مرحله (1 و2 ) تنها یک بیمارستان کارا بوده و در مرحله (3 و 4) هیچکدام از بیمارستانها کارا نبودهاند. بنابراین، تنها 7درصد از بیمارستانهای مورد مطالعه کارا بوده و پس از تعیین کارایی 4 مرحله و در نتیجه کارایی شبکه، بیمارستانها به ترتیب (از بیشترین کارایی به کمترین کارایی) رتبهبندی شده و در آخر پیشنهاداتی جهت بهبود کارایی بیمارستانها و تحقیقات آتی ارائه شده است.
As one of the most important institutions providing health and treatment services, the hospital plays an important role in the return of the physical and mental health of the society; therefore, effective management during a crisis can have a significant effect on the optimal performance of this institution. Resilient hospitals play a vital role in reducing mortality and severity of injuries by providing emergency services needed during accidents and disasters. Hence, this research was carried out with the aim of designing a model for assessing the resilience of the supply chain of public hospitals in Yazd province with the approach of network data coverage analysis (NDEA). This research is applied in terms of purpose and a descriptive-survey study in terms of method. The data has been collected through the review of articles and opinions of experts in the field of health. Determining the effective and ineffective hospitals, and finally, according to the results of the data coverage analysis, the sensitivity analysis of the data has been done. The results of the envelopment analysis of the input-oriented network data revealed that only 07percent of the studied hospitals were efficient. After determining the efficiency at four stages and the efficiency of the network, the hospitals were respectively ranked from the most efficient to the least efficient, and at the end, some suggestions for improving the efficiency of hospitals and future research were provided.
Key Words: performance evaluation, resilience, hospital supply chain, network data envelopment analysis
1.Introduction
Today, severe environmental changes and their unpredictability have increasingly attracted the attention of managers and planners in various fields. Lack of attention to these sudden and surprising changes not only puts organizations and institutions under threat and destruction, but it can also lead to human crisis in organizations such as hospitals (Khadmi-Jalgah-Najad, 2019). The importance of health supply chain is of great interest not only for the private sector to increase profits and reduce costs, but also for governments and the general public. In fact, it can have a direct impact on the quality of life of people in society. Achieving an ideal and efficient supply chain can be a fundamental step in improving the satisfaction of patients and health professionals and reducing costs. Hospitals are vital social institutions that provide essential health services to save lives and promote human health. However, the potential of hospitals to reduce risk and disasters is not only to continue providing essential health services in times of crisis, but also to manage community resilience to disasters in normal times (Ito & Aruga, 2022). Therefore, according to the type of function they have and being in the first place of reference for the injured, hospitals should have the best performance. Therefore, in order to maintain the basic functions and quickly return the hospital to its original state, the resilience of the hospital is important (Mohammed Hosseini Issini, 2019), which calls attention to the necessity of availability and efficiency of hospitals. With the increasing impact of disasters on people's lives in recent times, the need for resilience in the health care supply chain is very vital (Beg et al., 2019). The field of health and medicine is one of the fields where many disorders and risks occur (Mohammadipour, 2019). In this situation, people also expect hospitals to have a high level of continuity and sustainability, that is, to be available at all hours and provide medical care (Ernest Dube, 2020). Therefore, to maintain the performance of a hospital during disasters (Hiba Mehtadi et al., 2021), supply chain resilience is defined as the ability to proactively plan and design the supply chain network to anticipate unexpected disruptive events and respond adaptively to disruptions, which requires coordination and integration of resources and capabilities of supply chain entities to ensure adequate preparedness, effective recovery and response , and most importantly, providing robust services to patients in the event of a disruption. However, this supply chain must also support the well-being of its customers (Sawyer & Harrison, 2022). Hence, based on aforementioned points and the importance of resilience in the field of health, especially hospitals, this research aims to provide a suitable model to evaluate the efficiency of the resilience of the supply chain through the overlay analysis of network data in the studied hospitals.
- Literature Review
Health and safety are considered among the most important objectives in every country, and this is exemplified in the Constitution of the Islamic Republic of Iran, which highlights their importance as well. The health and community hygiene sector consistently aims to use minimal resources as efficiently as possible to deliver high-quality health and treatment services (Khatami Firouzabadi et al., 2017). Hence, it is important to evaluate the efficiency of health systems and medical centers at both micro and macro levels. In recent years, managers at these centers have shown a strong commitment to meeting the different needs of patients with high quality services. To achieve this goal, it is necessary to assess the performance and efficiency of each department within health centers (Jehan-tigh and Astavareh, 2016). Performance evaluation is a process that organizations always pursue to assess in various ways, aiming to improve and promote the organization's members and activities. In this regard, hospitals, as the most important units of the healthcare service delivery system, feel the need for performance evaluation more than other organizations since the weak performance of managers causes delay in the treatment or progression of diseases or death (Nazari, 1996). Therefore, in order to perform better, hospital managers need to examine the efficiency of different departments of hospitals and determine the causes of their inefficiency, which leads to people's satisfaction with the health and medical services of the country. (Samuel et al., 2014). In order to provide medical services and fulfill their mission, hospitals are made up of different departments. Thus, when examining the efficiency of hospitals, we should pay attention to examining their different units. These sectors have different inputs and outputs, and these inputs and outputs do not necessarily have the same scale. Therefore, the technique of data envelopment analysis can be used to check the efficiency of hospitals. On the other hand, in line with the primary objective of the research—to model and identify factors affecting hospital performance, compare units with one another, and rank them—the data envelopment analysis technique can effectively accomplish this goal (Shafi'i Nikabadi and Hosseini, 2018). In a comprehensive definition of resilience is considered as the ability of a system based on four actions of planning and preparation, returnability, recovery and adaptation in adverse events (Linko &Trump, 2020). At the time of an accident, hospitals, in addition to receiving and treating the injured, continue to take care of the existing patients. Therefore, in order to face these conditions, the concept of resilience should be considered (Khademi Jalgenejad, 2018). By creating resilient health systems, the hospital is able to predict, respond, cope and recover, and is also compatible with shocks and tensions (Laberda et al., 2017). Data envelopment analysis is a mathematical programming approach, one of the non-parametric methods of evaluating the performance and ranking of homogeneous decision-making units (Pratab Singh et al., 2022) which is also used for relative evaluation using multiple inputs and outputs. Scores evaluate the efficiency of decision-making units (Shafii Nik-Abadi et al., 2017). Since the conventional envelopment analysis models cannot be used to measure the performance of units with a network structure, the network data envelopment analysis approach should be used (Pikani et al., 2022), which can evaluate the performance of units with a network structure such as two-stage, series, parallel, mixed, etc. (Kao, 2017)
- Methodology
In terms of the purpose, this research is applied one, based on mathematical modeling with the help of the evaluation method. Regarding data collection, using library studies and the review of the related research and the opinions of health experts in the field under investigation, 10 main dimensions with 40 sub-dimensions were identified and examined. Since the aim of this research was to provide a suitable model to evaluate the efficiency of hospitals with an emphasis on the resilience component of the hospital supply chain, the data analysis method was based on open multi-stage NDEA and the statistical population included public hospitals in Yazd province in the summer of 1401. In this research, using Lingo software, optimal values were found.
4.Results
The present research findings enable managers to evaluate their performance against competitors and identify reasons and weaknesses for any low performance and take action to fix them. The output of the model and the hospital ranking help managers to examine the input, intermediate and output data in order to enhance their performance and take action to improve the status of these variables and strengthen the resilience of the hospital supply chain.
The results of the present study reveal that the resilience indicators of hospitals in terms of coordination with suppliers, stock management, support systems, medical equipment management strategies, government and organizations support for recovery and the nature and severity of the accident, compared to other indicators, and are not in favorable conditions to handel disruptions and crises, and they require attention and reinforcement. Also, in order to enhance patient satisfaction, the factors that lead to the deterioration of the target function should be minimized ensuring adequate preparation to handle crisis situations effectively and achieve the desired situation with proper planning since hospitals are among the most important organizations that provide medical care, in order to be efficient and perform well, they must respond in the best possible way when confronting accidents.
- Discussion
The present research findings enable managers to evaluate their performance against competitors and identify reasons and weaknesses for any low performance and take action to fix it. The output of the model and the hospital ranking help managers to examine the input, intermediate and output data in order to enhance their performance and take action to improve the status of these variables and strengthen the resilience of the hospital supply chain. In order to create resilience, several factors are involved, and by examining them, solutions are provided to reduce the disruptive factors. Some factors involved in creating resilience are continuous examination of the necessary equipment and emergency drugs and their supply and their proper management and storage. Additionally, ensuring that hospitals and suppliers meet their obligations in order to integrate the supply chain and its various sectors, establishing long-term contracts with suppliers in order to increase cooperation, planning crisis management, and activating the hospital incident command process to be ready and give timely responces to warnings in accord with incidents are among the issues to be considered.
زمینه و هدف: بیمارستان به عنوان یکی از مهمترین نهادهای ارائه دهنده خدمات بهداشتی و درمانی نقش مهمی را در بازگشت سلامت جسمی و روانی جامعه دارد لذا اعمال مدیریت کارآمد در زمان وقوع بحران میتواند در عملکرد مطلوب و بهینه این نهاد تأثیر بسزایی داشته باشد. بیمارستانهای تاب آور با ارائه خدمات اورژانسی مورد نیاز در هنگام حوادث و بلایا نقش حیاتی در کاهش مرگ و میر و شدت جراحات دارند. لذا این پژوهش با هدف" طراحی مدل ارزیابی تابآوری زنجیره تامین بیمارستانهای دولتی استان یزد با رویکرد تحلیل پوششی دادههای شبکهای" انجام شده است. روش پژوهش: این پژوهش از نظر هدف، کاربردی و از نظر نوع روش یک مطالعه توصیفی- پیمایشی است. دادهها از طریق بررسی مقالات و نظرات خبرگان حوزه سلامت گردآوری گردیده است .تحلیل دادهها با استفاده از تحلیل پوششی داههای شبکهای چند مرحلهای انجام گرفته است. یافتهها: تعیین بیمارستانهای کارا و ناکارا و در نهایت با توجه به نتایج حاصل از تحلیل پوششی دادهها به تحلیل حساسیت دادهها پرداخته شده است. نتیجهگیری: نتایج حاصل از تحلیل پوششی دادههای شبکهای ورودی محور نشان داده است که تنها 7درصد از بیمارستانهای مورد مطالعه کارا بوده و پس از تعیین کارایی 4 مرحله و در نتیجه کارایی شبکه، بیمارستانها به ترتیب (از بیشترین کارایی به کمترین کارایی) رتبهبندی شده و در آخر پیشنهاداتی جهت بهبود کارایی بیمارستانها و تحقیقات آتی ارائه شده است.
Achour, N., Miyajima, M., Pascale, F., & DF Price, A. (2014). Hospital resilience to natural hazards: classification and performance of utilities. Disaster prevention and management, 23(1), 40-52. doi 10.1108/DPM-03-2013-0057
Aldrighetti, R., Zennaro, I., Finco, S., & Battini, D. (2019). Healthcare supply chain simulation with disruption considerations: A case study from Northern Italy. Global Journal of Flexible Systems Management, 20(Suppl 1), 81-102. doi:10.1007/s40171-019-00223-8
Bag, S., Gupta, S., & Foropon, C. (2019). Examining the role of dynamic remanufacturing capability on supply chain resilience in circular economy. Management Decision, 57(4), 863-885. doi:10.1108/MD-07-2018-0724
Cimellaro, G. P., Malavisi, M., & Mahin, S. (2018). Factor analysis to evaluate hospital resilience. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(1), 04018002. doi:10.1061/AJRUA6.0000952
Currie, J., & Heslop, D. J. (2018). Operational systems evaluation of a large scale multi-agency decontamination exercise. International Journal of Disaster Risk Reduction, 31, 1054-1061. doi: 10.1016/j.ijdrr.2018.03. 027
Dube, E. (2020). The build-back-better concept as a disaster risk reduction strategy for positive reconstruction and sustainable development in Zimbabwe: A literature study. International journal of disaster risk reduction, 43, 101401. doi:10.1016/j.ijdrr.2019.101401
Firouzi Jahantigh, F., Astavare, M. (2016). "Evaluating the performance of Tehran University of Medical Sciences hospitals using the combined model of data envelopment analysis and Prometheus method". Iran's work health. 14(5): 140-152. .[In Persian] URL:http:// ioh.iums.ac.ir/ article-1-1969-fa.html
Haldane, V., De Foo, C., Abdalla, S. M., Jung, A. S., Tan, M., Wu, S., ... & Legido-Quigley, H. (2021). Health systems resilience in managing the COVID-19 pandemic: lessons from 28 countries. Nature Medicine, 27(6), 964-980. doi:10.1038/s41591-021-01381-y
Hassan, E. M., & Mahmoud, H. (2019). Full functionality and recovery assessment framework for a hospital subjected to a scenario earthquake event. Engineering Structures, 188, 165-177. doi:10.1016/j.engstruct. 2019.03.008
Hundal, G. S., Thiyagarajan, S., Alduraibi, M., Laux, C. M., Furterer, S. L., Cudney, E. A., & Antony, J. (2021). Lean Six Sigma as an organizational resilience mechanism in health care during the era of COVID-19. International Journal of Lean Six Sigma. doi:10.1108/IJLSS-11-2020-0204
Ito, H., & Aruga, T. (2022). A conceptual framework to assess hospitals for disaster risk reduction in the community. International Journal of Disaster Risk Reduction, 77, 103032. doi:10.1016/j.ijdrr.2022.103032
Kao, C. (2017). Network Data Envelopment Analysis. International Series in Operations Research & Management.
Khademi Jalgenejad, A., Ahmadikohen A., Hirani, A. (2018). Factors affecting hospital supply chain resilience (qualitative study). Hospital, 18(2 (serial 69) ), 61-73. .[In Persian] URL: http://jhosp.tums.ac.ir/article-1-6158-fa.html
Khademi Jalgenejad, A., Kohanali, R,. Hirani, A. (2019). Future research of resilient hospital supply chain with intuitive logic scenario planning. Hospital, 19(3 (serial 74)), 16-26. .[In Persian] URL: http://jhosp.tums.ac.ir/article-1-6295-fa.html
Khatami Firouzabadi S M A, Shafiei Nikabadi M, Tebyanian H, Shoji N. (2018) Presenting a Dynamic Model for Periodical Evaluation of Organizations Using DEA Case study: 13 hospitals in Semnan province. Koomesh 1397; 20 (3) :555-560. URL: koomeshjournal.semums.ac.ir/article-1-4167-fa.html
Labarda, C., Labarda, M. D. P., & Lamberte, E. E. (2017). Hospital resilience in the aftermath of Typhoon Haiyan in the Philippines. Disaster Prevention and Management: An International Journal. doi:10.1108/DPM-02-2017-0025
Mohammadipour, E. (2019). Determining the resilience strategies of the health tourism supply chain from the perspective of risk (case study: Ayatollah Yatharbi Kashan Hospital), Master of Business Administration, School of Management and Economics, Kashan University. .[In Persian] https://www.irandoc.ac.ir
Mohammad Hosseini Issini, F. (2019). Assessment and prioritization of factors affecting resilience in Bandar Abbas University Hospitals, Master's Degree, Faculty of Management, Economics and Accounting, Hormozgan University. .[In Persian] https://www.irandoc.ac.ir
Moons, K., Waeyenbergh, G., & Pintelon, L. (2019). Measuring the logistics performance of internal hospital supply chains–a literature study. Omega, 82, 205-217. doi:10.1016/j.omega.2018.01.007
Nazari, A. (1996). Performance evaluation of Semnan and Mazandaran provinces Health Network. Journal of Qazvin University of Medical Sciences, 2(8), 48-57.
Ozcan, Y. A. (2008). Health care benchmarking and performance evaluation. Springer US.
Peykani, P., Emrouznejad, A., Mohammadi, E., & Gheidar-Kheljani, J. (2022). A novel robust network data envelopment analysis approach for performance assessment of mutual funds under uncertainty. Annals of Operations Research, 1-27. doi:10.1007/s10479-022-04625-3
Sawyerr, E., & Harrison, C. (2022). Resilience in healthcare supply chains: a review of the UK’s response to the COVID19 pandemic. International Journal of Physical Distribution & Logistics Management, 53(3), 297-329. doi:10.1108/IJPDLM-09-2021-0403
Seyedin, H., Abasi Dolat Abadi, Z., Sorani, M., Naghdi, S., & Rajabfard Mazraeno, F. (2014). Vulnerability assessment of general hospitals of Tehran University of Medical Sciences. Journal of Health Promotion Management, 3(2), 65-71. URL: jhpm.ir/article-1-249-en.html
Scott-Samuel, A., Bambra, C., Collins, C., Hunter, D. J., McCartney, G., & Smith, K. (2014). The impact of Thatcherism on health and well-being in Britain. International Journal of Health Services, 44(1), 53-71. doi:10.2190/HS.44.1.d
Singh, A. P., & Yadav, S. P. (2022). A Two-stage Network Data Envelopment Analysis: An Education Sector Application. arXiv preprint arXiv:2206.01561. doi: 10.48550/arXiv.2206.01561
Shang, Q., Wang, T., & Li, J. (2022). A quantitative framework to evaluate the seismic resilience of hospital systems. Journal of Earthquake Engineering, 26(7), 3364-3388. doi:10.1080/13632469.2020.1802371
Shirali, G. A., Azadian, S. H., & Saki, A. (2016). A new framework for assessing hospital crisis management based on resilience engineering approach. Work, 54(2), 435-444. doi:10.3233/wor-162329
Shafi'i Nikabadi, M., Hosseini, F. (2018). "Evaluating the efficiency of hospitals using the fuzzy serological integration model and fuzzy network data coverage analysis". Hospital. 18 (4): 75-85. .[In Persian] URL: http://jhosp.tums.ac.ir/article-1-5847-fa.html
Shafii Nikabadi, M., Salimi, A. (2014). Using fuzzy network data overlay analysis to investigate the effect of organizational culture on non-financial performance through the mediation of the role of knowledge use and exploitation. Productivity Management, 9(3(34) Fall), 45-72. .[In Persian] URL: https://sanad.iau.ir/fa/Article/975995. fa.html
Shafii Nikabadi, M., Shahroudi, C., Owaisi Imran, A., Khosravi, M. (2017). "Evaluating the efficiency of Iran's regional power companies using data envelopment analysis and neural networks". Industrial management studies. 16(51): 181-206. .[In Persian] doi:10.22054/jims.2018.15618.1551
Shafii Nikabadi, M., Yakideh, K and Owaisi Imran, A. (2016). "Presentation of network data coverage analysis model with integration of favorable and unfavorable intermediate and final outputs". Operations research in its applications (applied mathematics). 14(1) (series 52), 95-116. .[In Persian] URL: http://jamlu.liau.ac.ir/article-1-1169-fa.html
Tan, Y., & Despotis, D. (2021). Investigation of efficiency in the UK hotel industry: A network data envelopment analysis approach. International Journal of Contemporary Hospitality Management. doi:10.1108/IJCHM-07-2020-0641
Trump, B. D., Bridges, T. S., Cegan, J. C., Cibulsky, S. M., Greer, S. L., Jarman, H., ... & Linkov, I. (2020). An analytical perspective on pandemic recovery. Health security, 18(3), 250-256. doi:10.1089/hs. 2020.0057
Zarabi, B. (2021). Evaluating resilience and providing solutions to improve the resilience of the supply chain of Baqiyatollah Hospital and Medical Center in Tehran, Master of Industrial Engineering, Business Management, Faculty of Management and Economics, Tabriz University. [In Persian] https://www.irandoc.ac.ir