اثرات مکملسازی جیره با سطوح مختلف آرژینین بر جمعیت میکروبی رودۀ کور و خصوصیات آنتیاکسیدانی سرم جوجههای گوشتی سالم و چالشیافته با مخلوط آیمریاهای مختلف
محورهای موضوعی :
آسیب شناسی درمانگاهی دامپزشکی
فاطمه ایزدی یزدان آبادی
1
,
غلامعلی مقدم
2
,
احمد نعمت اللهی
3
,
منیره خرداد مهر
4
,
مهدی عباس‏ آبادی
5
,
هادی قنبرزاده
6
1 - دانشجوی دکترای تخصصی علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.
2 - استاد گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
3 - استاد گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه تبریز، تبرز، ایران
4 - دانشیار گروه پاتوبیولوژی ، دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران.
5 - دانشجوی کارشناسی ارشد علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.
6 - دانشجوی دکترای تخصصی علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.
تاریخ دریافت : 1398/10/14
تاریخ پذیرش : 1399/05/19
تاریخ انتشار : 1399/06/01
کلید واژه:
آرژینین,
جمعیت میکروبی,
آیمریا,
جوجهگوشتی,
رودهکور,
وضعیت آنتیاکسیدانی,
چکیده مقاله :
کوکسیدیوز سالانه باعث زیان های اقتصادی در واحدهای پرورش طیور می شود و استراتژی های تغذیه ای می تواند آن را تخفیف دهد. این مطالعه به منظور بررسی اثرات سطوح مختلف آرژینین بر جمعیت میکروبی روده ء کور و خصوصیات آنتی اکسیدانی سرم جوجه های گوشتی چالش یافته با آیمریا انجام شد. تیمارهای آزمایشی شامل جوجه های سالم و جوجه های چالش یافته تغذیه شده با جیره های مکمل سازی شده با مقادیر 85، 100، 125 و 150 درصد آرژینین قابل هضم توصیه شده، بودند. برای کشت باکتریایی،درزمانکشتار (21 و 42 روزگی) ازمحتویاترودهکور تحتشرایطاستریلنمونه برداری انجام شد.همچنین سطح فاکتورهای اکسیدانی و آنتی اکسیدانی و نیتریک اکسید در سرم جوجه ها اندازه گیری شد. روده کور جوجه هایی که جیره های حاوی سطوح 125 و 150 درصد آرژینین را دریافت کرده بودند، جمعیت اشریشیای کولای پایین تر و جمعیت لاکتوباسیل ها، بیفیدوباکتری ها و توتال باکتری های بالاتر و همچنین pH بالاتری را نشان دادند (05/0p < /em><)، ولی جمعیت انتروکوکوس ها تحت تأثیر سطوح آرژینین و چالش کوکسیدیوز قرار نگرفت (05/0p < /em>>). همچنین چالش با آیمریا، سطح سرمی گلوتاتیون پراکسیداز، سوپر اکسید دیسموتاز و ظرفیت تام آنتی اکسیدانی را کاهش و سطح سرمی نیتریک اکسید و مالون دی آلدئید را افزایش داد (05/0p < /em><). البته، افزودن آرژینین تنها در سطوح 125 و 150 درصد توانست سطح گلوتاتیون پراکسیداز را افزایش دهد (05/0p < /em><) و تأثیر معنی داری بر دیگر پارامترها نداشت (05/0p < /em>>).مطالعه حاضر مشخص کرد که مصرف آرژینین در سطوح 125 و 150 درصد، تحت شرایط چالش با آیمریا، جمعیت باکتری های پاتوژن را کاهش و جمعیت باکتری های سودمند و نیز سطح گلوتاتیون پراکسیداز را افزایش داد.
چکیده انگلیسی:
Cocidiosis causes annual economic losses in industrial poultry farms and nutritional strategies can alleviate these losses. The present study was conducted to evaluate the effects of different levels of arginine on cecum microbial population and serum antioxidant properties of healthy and Eimeria-challenged broiler chicks. Experimental treatments included healthy and challenged broiler chicks fed with 85, 100, 125 and 150% of the recommended arginine. To conduct bacterial culture, samples were collected aseptically from cecum during slaughter (on days 21 and 42). The levels of antioxidant and oxidant factors and nitric oxide were also assessed in the serum of broiler chicks. The chicks which had received 125 and 150% of arginine showed lower E. coli population and higher population of lactobacillus, total bacteria, bifidiobacteria and pH in the cecum (p < /em><0.05), but entrococous population was not influenced (p < /em>>0.05). Eimeria challenge decreased the level of glutathione peroxidase, super oxide dismutase, and total antioxidant capacity and increased the levels of malondialdehyde (p < /em><0.05), but inclusion of arginine in the levels of 125 and 150% only increased the level of glutathione peroxidase (p < /em><0.05), and did not have any effect on other parameters (p < /em><0.05). In summary, consumption of arginine in higher levels (125 and 150%) decreased the pathogenic population and increased the beneficial bacteria and the level of glutathione peroxidase in Eimeria-challenged broiler chicks.
منابع و مأخذ:
Allen, P. (1997). Nitric oxide production during Eimeria tenella infections in chickens. Poultry Science, 76(6): 810-813.
Allen, P.C. and Fetterer, R.H. (2000). Effect of Eimeria acervulina infections on plasma L-arginine. Poultry Science, 79(10): 1414–1417.
Arak, H., Karimi Torshizi, M.A. and Rahimi, Sh. (2013). Study on the effect of Savory (Satureja khuzestanica) essential oil and Polysorb toxin-binder against experimental aflatoxicosis in Japanese quail. Veterinary Clinical Pathology, 7(27): 249-260. [In Persian]
Atakisi, O., Atakisi, E. and Kart, A. (2009). Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight and blood biochemical values in Japanese quails. Biological Trace Element Research, 132(1-3): 136-143.
Azad, M.A.K., Kikusato, T., Maekawa, H., Shirakawa, M. and Toyomizu, M. (2010). Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comparative Biochemistry and Physiology, 155(3): 401-406.
Boulton, K., Nolan, M. J., Harman, K., Psifidi, A., Wu, Z. and Bishop, S., (2017). Resistance and Tolerance are separabletraits in the innate immune response of chickens to Eimeria tenella induced coccidiosis. Veterinary Clinical Pathology, 44 (2): 28-35.
Bun, S.D., Guo, Y.M., Guo, F.C., Ji, F.J. and Cao, H. (2011). Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poultry Science, 90(6): 1220-1226.
Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radical Biology and Medicine, 29(3-4): 323-333.
Craven, S.E. and Williams, D.D. (1998). In vitro attachment of Salmonella typhimurium to chicken cecal mucus: effect of cations andpretreatment with Lactobacillusspp. isolated from the intestinaltracts of chickens. Journal of Food Protection, 61(3): 265-271.
Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiology Review, 82(1): 47-95.
Duan, X., Li, F., Mou, S., Feng, J., Liu, P. and Xu, L. (2015). Effects of dietary L-arginine on laying performance and anti-oxidant capacity of broiler breeder hens, eggs, and offspring during the late laying period. Poultry Science, 94(12): 2938-2943.
Giannenas, I., Papadopoulos, E., Tsalie, E., Triantafillou, E., Henikl, S., Teichmann, K. and Tontis, D. (2012). Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Veterinary Parasitology, 188(1-2): 31-40.
Graat, E.A., Ploeger, H.W., Henken, A.M., De Vries Reilingh, G., Noordhuzien, J.P. and Van Beek, P.N. (1996). Effect of initial litter contamination level with Eimeria acervulina on population dynamics and production characteristics in broilers. Veterinary Parasitolgy, 65(3-4): 223-232.
He, J., Hwang, G., Liu, Y., Gao, L., Kilpatrick-Liverman, L., Santarpia, P., et al. (2016). L-Arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. Journal of Bacteriology, 198(19): 2651-2661.
Langrová, I., Chodová, D., Tůmová, T., Horáková, B., Krejčířová, R., Šašková, M., et al. (2019). Assessment of low doses of Eimeria tenella sporulated oocysts on the biochemical parameters and intestinal microflora of chickens. Turkish Journal of Veterinary and Animal Sciences, 43(1): 76-81.
Liopis, M., Antolin, M., Guarner, F., Salas, A. and Malagelada, J.R. (2005). Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitronbenzene sulphonic acid. Gut, 54(7): 955-959.
Ma, X.Y.Y.C., Lin, Z.Y., Jiang, C.T., Zheng, G.L., Zhou, D.Q., Yu, T., et al. (2010). Dietary arginine supplementation enhances anti-oxidative capacity and improves meat quality of finishing pigs. Amino Acids, 38(1): 95-102.
Mahdavi, S. and Nobakht, A. (2018). Evaluation of the effect of Thyme (Thymus vulgaris L.) and Ziziphora (Ziziphora tenuior L.) essential oils on intestinal microflora of broilers. Veterinary Clinical Pathology, 11(44): 305-312. [In Persian]
Milinkovik-Thur, S., Stogective, Z., Prisljin, J., Zdelar-Tuk, M., Poljicak-Milas, N., Ljubic, B.B., et al. (2007). Effect of refeeding on the antioxidant system in cockerels and pullets. Acta Veterinaria Hungarica, 55(2): 181-188.
Montagne, L., Pluske, J.R. and Hampson, D.J. (2003). A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108(1-4): 95-117.
Mookiah, S., Sieo, C.C., Ramasamy, K., Abdullah, N. and Ho, Y.W. (2014). Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. Journal of Science Food Agriculture,94(2): 341-348.
Olfati, A., Mojtahedin, A., Sadeghi, T. Akbari, M. and Martínez-Pastor, F. (2018). Comparison of growth performance and immune responses of broiler chicks reared under heat stress, cold stress and thermoneutral conditions. Spanish Journal of Agriculture Research, 16(2): 1-7.
Perez, P.F., Minnaard, J., Rouvet, M., Knabenhans, C., Brassart, D., De Antoni, G.L., et al. (2001). Inhibition of Giardia intestinalis by extracellular factors from lactobacilli: an in vitro study. Applied Environment Microbiology, 67(11): 5037-5042.
Qin, Z.R., Fukata, T., Baba, E. and Arakawa, A. (1995). Effect of Eimeria tenella infection on Salmonella enteritidis infection in chickens. Poultry Science, 74(1): 1-7.
Rasoulifard, M.H. and Zargari, F. (2015). The effects of aqueous extract of white tea on serum antioxidant enzymes in rats exposed to arsenic. Veterinary Clinical Pathology, 9(34): 153-178. [In Persian]
Ren, W., Chen, S., Yin, J., Duan, J., Li, T., Liu, G., et al. (2014). Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. The Journal of Nutrition, 144(6): 988-995.
Ren, W., Zou, L., Li, N., Wang, Y., Liu, G., Peng, Y., et al. (2013). Dietary arginine supplementation enhances immune responses to inactivated Pasteurella multocida vaccination in mice. British Journal of Nutrition, 109(5): 867-72.
Sergeant, M.J., Constantinidou, C., Cogan, T.A., Bedford, M.R., Penn, C.W. and Pallen, M.J. (2014). Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome, Plos One, 9(3): 18-21.
Tierney, J., Gowing, H., Van Sinderen, D., Flynn, S., Stanley, L., McHardy, N., et al. (2004). In vitro inhibition of Eimeria tenella invasion by indigenous chicken Lactobacillus species. Veterinary Parasitology, 122(3): 171-182.
Williams, R.B. (1999). A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. International Journal of Parasitology, 29(8): 1209-1229.
Wu, G. and Meininger, C.J. (2000). Arginine nutrition and cardiovascular function. Journal of Nutrition, 130(11): 2626-2629.
Wu, Z.G., Hu, T.J., Rothwell, L., Vervelde, L., Kaiser, P., Boulton, K., et al. (2016). Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA. Developmental and Comparative Immunology, 63(1): 206-212.
_||_
Allen, P. (1997). Nitric oxide production during Eimeria tenella infections in chickens. Poultry Science, 76(6): 810-813.
Allen, P.C. and Fetterer, R.H. (2000). Effect of Eimeria acervulina infections on plasma L-arginine. Poultry Science, 79(10): 1414–1417.
Arak, H., Karimi Torshizi, M.A. and Rahimi, Sh. (2013). Study on the effect of Savory (Satureja khuzestanica) essential oil and Polysorb toxin-binder against experimental aflatoxicosis in Japanese quail. Veterinary Clinical Pathology, 7(27): 249-260. [In Persian]
Atakisi, O., Atakisi, E. and Kart, A. (2009). Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight and blood biochemical values in Japanese quails. Biological Trace Element Research, 132(1-3): 136-143.
Azad, M.A.K., Kikusato, T., Maekawa, H., Shirakawa, M. and Toyomizu, M. (2010). Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comparative Biochemistry and Physiology, 155(3): 401-406.
Boulton, K., Nolan, M. J., Harman, K., Psifidi, A., Wu, Z. and Bishop, S., (2017). Resistance and Tolerance are separabletraits in the innate immune response of chickens to Eimeria tenella induced coccidiosis. Veterinary Clinical Pathology, 44 (2): 28-35.
Bun, S.D., Guo, Y.M., Guo, F.C., Ji, F.J. and Cao, H. (2011). Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poultry Science, 90(6): 1220-1226.
Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radical Biology and Medicine, 29(3-4): 323-333.
Craven, S.E. and Williams, D.D. (1998). In vitro attachment of Salmonella typhimurium to chicken cecal mucus: effect of cations andpretreatment with Lactobacillusspp. isolated from the intestinaltracts of chickens. Journal of Food Protection, 61(3): 265-271.
Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiology Review, 82(1): 47-95.
Duan, X., Li, F., Mou, S., Feng, J., Liu, P. and Xu, L. (2015). Effects of dietary L-arginine on laying performance and anti-oxidant capacity of broiler breeder hens, eggs, and offspring during the late laying period. Poultry Science, 94(12): 2938-2943.
Giannenas, I., Papadopoulos, E., Tsalie, E., Triantafillou, E., Henikl, S., Teichmann, K. and Tontis, D. (2012). Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Veterinary Parasitology, 188(1-2): 31-40.
Graat, E.A., Ploeger, H.W., Henken, A.M., De Vries Reilingh, G., Noordhuzien, J.P. and Van Beek, P.N. (1996). Effect of initial litter contamination level with Eimeria acervulina on population dynamics and production characteristics in broilers. Veterinary Parasitolgy, 65(3-4): 223-232.
He, J., Hwang, G., Liu, Y., Gao, L., Kilpatrick-Liverman, L., Santarpia, P., et al. (2016). L-Arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. Journal of Bacteriology, 198(19): 2651-2661.
Langrová, I., Chodová, D., Tůmová, T., Horáková, B., Krejčířová, R., Šašková, M., et al. (2019). Assessment of low doses of Eimeria tenella sporulated oocysts on the biochemical parameters and intestinal microflora of chickens. Turkish Journal of Veterinary and Animal Sciences, 43(1): 76-81.
Liopis, M., Antolin, M., Guarner, F., Salas, A. and Malagelada, J.R. (2005). Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitronbenzene sulphonic acid. Gut, 54(7): 955-959.
Ma, X.Y.Y.C., Lin, Z.Y., Jiang, C.T., Zheng, G.L., Zhou, D.Q., Yu, T., et al. (2010). Dietary arginine supplementation enhances anti-oxidative capacity and improves meat quality of finishing pigs. Amino Acids, 38(1): 95-102.
Mahdavi, S. and Nobakht, A. (2018). Evaluation of the effect of Thyme (Thymus vulgaris L.) and Ziziphora (Ziziphora tenuior L.) essential oils on intestinal microflora of broilers. Veterinary Clinical Pathology, 11(44): 305-312. [In Persian]
Milinkovik-Thur, S., Stogective, Z., Prisljin, J., Zdelar-Tuk, M., Poljicak-Milas, N., Ljubic, B.B., et al. (2007). Effect of refeeding on the antioxidant system in cockerels and pullets. Acta Veterinaria Hungarica, 55(2): 181-188.
Montagne, L., Pluske, J.R. and Hampson, D.J. (2003). A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108(1-4): 95-117.
Mookiah, S., Sieo, C.C., Ramasamy, K., Abdullah, N. and Ho, Y.W. (2014). Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. Journal of Science Food Agriculture,94(2): 341-348.
Olfati, A., Mojtahedin, A., Sadeghi, T. Akbari, M. and Martínez-Pastor, F. (2018). Comparison of growth performance and immune responses of broiler chicks reared under heat stress, cold stress and thermoneutral conditions. Spanish Journal of Agriculture Research, 16(2): 1-7.
Perez, P.F., Minnaard, J., Rouvet, M., Knabenhans, C., Brassart, D., De Antoni, G.L., et al. (2001). Inhibition of Giardia intestinalis by extracellular factors from lactobacilli: an in vitro study. Applied Environment Microbiology, 67(11): 5037-5042.
Qin, Z.R., Fukata, T., Baba, E. and Arakawa, A. (1995). Effect of Eimeria tenella infection on Salmonella enteritidis infection in chickens. Poultry Science, 74(1): 1-7.
Rasoulifard, M.H. and Zargari, F. (2015). The effects of aqueous extract of white tea on serum antioxidant enzymes in rats exposed to arsenic. Veterinary Clinical Pathology, 9(34): 153-178. [In Persian]
Ren, W., Chen, S., Yin, J., Duan, J., Li, T., Liu, G., et al. (2014). Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. The Journal of Nutrition, 144(6): 988-995.
Ren, W., Zou, L., Li, N., Wang, Y., Liu, G., Peng, Y., et al. (2013). Dietary arginine supplementation enhances immune responses to inactivated Pasteurella multocida vaccination in mice. British Journal of Nutrition, 109(5): 867-72.
Sergeant, M.J., Constantinidou, C., Cogan, T.A., Bedford, M.R., Penn, C.W. and Pallen, M.J. (2014). Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome, Plos One, 9(3): 18-21.
Tierney, J., Gowing, H., Van Sinderen, D., Flynn, S., Stanley, L., McHardy, N., et al. (2004). In vitro inhibition of Eimeria tenella invasion by indigenous chicken Lactobacillus species. Veterinary Parasitology, 122(3): 171-182.
Williams, R.B. (1999). A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. International Journal of Parasitology, 29(8): 1209-1229.
Wu, G. and Meininger, C.J. (2000). Arginine nutrition and cardiovascular function. Journal of Nutrition, 130(11): 2626-2629.
Wu, Z.G., Hu, T.J., Rothwell, L., Vervelde, L., Kaiser, P., Boulton, K., et al. (2016). Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA. Developmental and Comparative Immunology, 63(1): 206-212.