شبیهسازی عملکرد ذرت تحت سطوح مختلف نیتروژن با استفاده از مدل DSSAT
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیفرزاد پاک نژاد 1 , شیدا معیری پور 2 , فیاض آقایاری 3 , محمدنبی ایلکایی 4
1 - گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
2 - دانشجوی کارشناسی ارشد، گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
3 - گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
4 - گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
کلید واژه: عملکرد, شبیه سازی, ذرت, نیتروژن,
چکیده مقاله :
مدل DSSAT می تواند رشد، نمو و عملکرد گیاه را که در یک سطح یکنواخت کشت شده باشد تحت شرایط مدیریتهای مشخص مشتمل بر تغییرات در میزان آب خاک، کربن خاک، نیتروژن خاک و آب شویی نیتروژن شبیه سازی کند. این مطالعه به منظور بررسی اثرات نیتروژن بر عملکرد و اجزای عملکرد ذرت رقم 704 با مدل، و کالیبراسیون مدل CERES-Maize تحت 4 سطح کود نیتروژن N1: 25% کمتر از توصیه شده (150 کیلوگرم در هکتار)، N2: توصیه شده (200 کیلوگرم در هکتار)، N3: 50% کمتر از توصیه شده (260 کیلوگرم در هکتار) و N4: 50% بیشتر از توصیه شده (310 کیلوگرم در هکتار)، آزمایشی در قالب طرح بلوکهای کامل تصادفی در سه تکرار در سال زراعی 1392 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه آزاد اسلامی واحد کرج اجرا شد. مقایسه مقادیر اندازهگیری شده و شبیهسازی شده مدل در صفات عملکرد بلال، بیوماس، شاخص سطح برگ و ماده خشک ساقه، صورت گرفت. نتایج حاصل از شبیهسازی بیوماس نشان داد که، در هر چهار سطح کودی RMSE به ترتیب در محدوده 48/2496، 24/2159، 43/2302 و 19/3289 کیلوگرم در هکتار به دست آمدند. در عملکرد بلال بالاترین میزان ضریب تبیین 98/0=R2 مربوط به N4: 50% بیشتر از توصیه شده بود. در حقیقت این تیمار توسط مدل از بالاترین دقت جهت پیش بینی عملکرد بلال برخوردار بود. برای شاخص سطح برگ نیز، دامنه تغییرات ضریب d که در محدوده بین 94/0- 77/0 است، نشان دهنده آن است که مدل در پیش بینی روند تغییرات شاخص سطح برگ موفق بوده است. بنابراین، مدل توانایی مناسبی در شبیهسازی فرایندهای رشد و نمو و عملکرد ذرت در 4 سطح نیتروژن داشته است. لذا میتوان بعد از واسنجی و بررسی صحت کارکرد مدل، آن را برای اهداف پژوهشی مورد نظر در شرایط اقلیمی منطقه کرج به کار برد.
Decision Support System for Agrotechnology Transfer (DSSAT) model is able to simulate plant growth, development, and yield that are grown on a uniform surface under simulated management conditions, including changes in soil water, soil carbon, soil nitrogen contents and nitrogen leaching. This study was aimed to investigate the effects of nitrogen on yield and yield components of maize variety SC704 by using this model, and to calibrate CERES-Maize model under 4 levels of nitrogen fertilizer: N1: 25% less than the recommended level, N2: recommended level (200 kg/ha), N3: 50% less than recommended level (260 kg/ha), and N4: 50% more than the recommended level (310 kg/ha). To evaluate the applicability of this model an experiment based on randomized complete block design with three replications was conducted during 2013 at the Research Field of Agriculture Faculty of Islamic Azad University – Karaj Branch. The measured traits, and their simulated values for ear and biomass yields, leaf area index (LAI) and stem dry matter content were compared. The results of the biomass simulation showed that Root Mean Square Error (RMSE) of the four fertilizer levels ranged 2496.48, 2159.24, 2302.43, and 3289.19 kg/ha respectively. For the ear yield, the highest coefficient of determination (R2 = 0.98) was obtained by N4. In fact, this treatment provided highest accuracy for predicting the yield of maize by the model. For leaf area index, the Willmott Agreement Index (d) varied between 0.77-0.94. This indicates that the model has successfully predicted the variation of leaf area index. Therefore, the model is considered appropriate for simulating growth, development and yield of maize under 4 levels of nitrogen fertilizer. In this case, it is recommended that the model is calibrated and verified, and then, it is applied for research purposes in Karaj climatic conditions.
· Aggarwal, P.K., N. Karla, A.K. Singh, and S.K. Sinha. 1994. Analyzing the limitations set by climatic factors, genotype and water and nitrogen availability on productivity of wheat I. The model description, parameterization and validation, Field Crops Research. 38: 73-91.
· Arora, V.K., H. Singh, and B. Singh. 2007. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model. Agricultural Water Managment. 94: 22-30.
· Asadi, M.E., and R.S. Clemente. 2003. Evaluation of CERES-Maize of Dssat model to simulate nitrate leaching, yield and soil moisture content tropical condition. Journal of food, Agriculture & Environment. 1(3& 4): pp. 270-276.
· Bannayan, M., N.M.J. Crout, and G. Hoogenboom. 2003. Application of the CERES- wheat model for within season prediction of winter wheat yields in the United Kingdom. Agronomy Journal. 95: 114-125.
· Binder, J., S. Graeff, J. Limk, W. Claupein, M. Liu, M. Dai, and P. Wang. 2008. Model-based approach to quantify production potentials of summer maize and spring maize in the North Chaina plain. Agronomy Journal. 100: 863-873.
· Cedron, F.X.L., K.J. Boot, B.R. Nogueira, and F. Sau. 2005. Testing CERES Maize versions to estimate maize production in a cool environment. European Journal of Agronomy. 23: 89-102.
· Dejonge, K. 2011. Evaluation improvement of CERES-Maize evapotranspiration simulations under full and limited irrigation treatments in northern Colorado. Department of Civil and environmental Engineering, Colorado State University.
· DSSAT Training Workshop. 2008. Cultivar coefficients in the cereal model, ppt. Training Program on DSSAT the University of Georgia, ICASA.
· Ghaffari. A., H.F. Cook, and H.C. Lee. 2001. Simulating winter wheat yields under temperate conditions: exploring different management scenarios. European Journal of Agronomy. 15: 231-240.
· Hoogenboom, G.J., J.W. Jones, P.W. Wilkens, W.D. Batchelor, W.T. Bowen, L.A. Hunt, N. Pickering, U. Singh, D.C. Godwin, B. Baer, K.J. Boote, J.T. Ritchie, and J.W. White. 2003. Crop models. pp. 95-242. InG.Y. Tsuji, G. Uehara, and S. Balas (ed.) DSSAT v3. Vol. 2–2. Univ. of Hawaii, Honolulu
· Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003. The CERES-WHEAT cropping system model. European Journal of Agronomy. 18: 235-265.
· Lopez-Cedron, F.X., K.J. Boot, J. Pineiro, and F. Sau. 2008. Improving the CERES-Maize model ability to simulate water deficit impact on maize production yield components. Agronomy Journal. 100: 297-307.
· Ma, L., G. Hoogenboom, L.R. Ahuja, J.C. Ascough, and S.A. Sanseendran. 2006. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agricultural Systems. 87: 274-295.
· Majidi Fakhr, F., F. Paknejad, M.N. Ilkaee, M. Nasri, and A. Pazoki. 2012. Simulation of wheat cultivar response to irrigation treatments using of CERES-Wheat model. American Journal of Agricultural and Biological Sciences. 7 (2): 135-142.
· Nouna, B.B., N. Katerji, and M. Mastorilli. 2000. Using the CERES-Maize model in semi-arid mediterranen environment. Evaluation of model performance. European Journal of Agronomy. 13: 309-322.
· Paknejad, F., F. Majidi Fakhr, and S.M. Mirtaheri. 2012. Validation of the ceres-wheat for prediction of wheat varieties in irrigation and terminal drought stress. American Journal of Agricultural and Biological Sciences. 7 (2): 180-185.
· Soltani, A., M.J. Robertson, Y. Mohammad-Nejad, and A. Rahemi-Karizaki. 2006. Modeling chickpea growth and development: leaf production and senescence. Field Crops Research. 99: 14-23.
· Soltani, A., and G. Hoogenboom. 2007. Assessing crop management with crop simulation models based on generated weather data. Field Crop Research. 103: 198-207.
· Soler, C.M.T., P.C. Sentelhas, and G. Hoogenboom. 2007. Application of the CSM-CERES-Maize model for planting data evaluation and yield forecasting for maize grown off-season in subtropical environment. European Journal Agronomy. 27: 165-177.
· Timsina, J., and E. Humphreys. 2006. Performance of CERES-Rice and CERES-Wheat models in rice–wheat systems: A review. Agricultural Systems. 90: 5–31.
· Xevi, E., J. Gilley, and J. Feyen. 1996. Comparative study of two crop yield simulation models. Agric. Water Manage. 30: 155- 173.
Yang, Z., G.G. Wilarkson, G.S. Buol, and R.W. Heinger. 2009. Estimating genetic coefficients for the CSM-CERES-Maize model in North Carolina environments. Agronomy Journal. 101: 1276-1285.