نحوه تشکیل کانسار باریت آب ترش،استان کرمان،با نگرشی بر ژئوشیمی عناصر نادر خاکی و ایزوتوپهای پایدار اکسیژن و گوگرد
محورهای موضوعی : علوم زمینحسین کلانترهرمزی 1 , فرهاد احیاء 2 , قدرت الله رستمی پایدار 3 , سارا ملکی خیمه سری 4
1 - دانشگاه آزاد اسلامی واحد بهبهان
2 - گروه زمین شناسی، واحد بهبهان، دانشگاه آزاد اسلامی، بهبهان، ایران
3 - گروه زمین شناسی دانشگاه آزاد اسلامی واحد اهواز
4 - گروه زمین شناسی دانشگاه آزاد اسلامی واحد بهبهان
کلید واژه: باریت, ژئوشیمی, عناصر نادر خاکی, ایزوتوپ,
چکیده مقاله :
باریت می تواند در محیط های مختلف زمین شناسی تشکیل شود، به طوری که در طیف گسترده ای از انواع کانسارها یافت می شود.برای تعیین منشأ و شرایط فیزیکی و شیمیایی تشکیل کانسار باریت آب ترش، مطالعه جامعی با استفاده از روشهای پتروگرافی، ژئوشیمی عناصر نادر خاکی و ایزوتوپ های اکسیژن وگوگرد انجام شد.کانی سازی باریت در آب ترش به صورت یک رگۀ چینه کران در واحدهای سنگی کربناتی سنونین رخ می دهد. باریت با کوارتز و مقادیر جزیی مالاکیت، کریزوکولا، اکسیدها و هیدروکسیدهای آهن و منگنز، گالن، آزوریت، فلوریت، پیریت و بورنیت همراه است. سنگ های میزبان برشی و سیمان شده توسط باریت حاکی از یک منشأ اپی ژنتیک برای کانی سازی باریت است. مقادیر مجموع عناصر نادر خاکی در نمونه های باریت بسیار کم است (56/14-32/5 ppm)، و الگوهای هنجار شده با کندریت غنی شدگی عناصر نادر خاکی سبک نسبت به عناصر نادر خاکی سنگین را نشان می دهند.مقادیر کم مجموع عناصر نادر خاکی و نسبت های عنصری عناصر نادر خاکی (Ce/La؛ (La/La*)N و (Gd/Gd*)N) نشان می دهد که آب دریا با ماهیت ژئوشیمیایی بسیار تغییر یافته (آب های فسیلی) به عنوان سیال ته نشست دهندۀ باریت عمل کرده است.مقادیر δ18O و δ34S در نمونه های باریت (به ترتیب 1/11+-4/10+ ‰ و 8/27+-3/27+ ‰) و مقادیر δ34S در گالن (3/6+ و 9/7+ ‰) نشان می دهد که سولفات (و در نتیجه گوگرد) از آب های فسیلی حمل کنندۀ سولفات و یا تبخیری ها منشأ گرفته است. کاهیدگی ترموشیمیایی سولفات (TSR) محتمل ترین مکانیسم برای تشکیل گوگرد کاهیده در گالن است.در این مطالعه، کانسار آب ترش به عنوان یک کانسار باریت وابسته به ساختار(ناپیوستگی) طبقه بندی می شود.
Barite can form in various geological environments, as it is found in a wide range of mineral deposit types. To determine the origin and physicochemical conditions under which the Ab Torsh barite deposit was formed, a comprehensive study was carried out using petrographical, REE geochemical, O and S isotopic. Barite mineralization occurs at Ab Torsh as a stratabound vein in the Senonian sedimentary rock units. Barite is accompanied by quartz and subordinate malachite, chrysocolla, Fe and Mn oxides and hydroxides, galena, azurite, fluorite, pyrite, and bornite. The brecciated host rocks cemented by barite imply an epigenetic origin for the barite mineralization. The ∑REE values are very low in barites (5.32-14.56 ppm), with chondrite-normalized patterns displaying LREE enrichment relative to HREE. The REE elemental ratios show that seawater with a highly modified geochemical signature (connate waters) acted as the barite depositing fluid. The δ18O and δ34S values in barites (+10.4‒+11.1‰ and +27.3‒+27.8‰, respectively) and δ34S values in galena (+6.3 and +7.9‰) indicate that sulfate (and thus sulfur) originated from sulfate carrying connate waters and/or evaporites. The Ab Torsh deposit is classified here as a structure (unconformity)-related barite deposit. It is concluded that intense faulting and the resulting brecciation of the host rocks probably provided the conduits needed for upward migration of the deep mineralizing fluids from a basinal brine source. Barite was formed where these ascending Ba-bearing hydrothermal fluids encountered sulfate-containing connate waters trapped within the overlying Senonian strata and or the descending meteoric waters that gained sulfate from evaporite-bearing rock units.
[1] آقانباتی، علی.، 1383، زمین شناسی ایران. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 586 صفحه.
[2] حمدی، ب.، 1374، سنگ¬های رسوبی پرکامبرین-کامبرین در ایران. طرح تدوین کتاب.
[3] حیدری، م.، 1398، گزارش پیجویی و تهیۀ نقشه در مقیاس 5000 : 1 محدودۀ معدنی آب ترش. شرکت صنایع تولید پودر بندر امام. 78 صفحه.
[4] قرباني، م.، 1381، ديباچه¬اي بر زمين شناسي اقتصادي ايران، انتشارات سازمان زمين شناسي و اكتشافات معدني كشور،صفحه 695.
[5] کشفی، س.م.، 1376، ویژگی¬های کانسارسازی و ژئوشیمیایی کانسار باریت آب ترش منطقۀ باغین کرمان. دانشگاه شهید باهنر کرمان، پایان نامه کارشناسی ارشد.
[6 [Abidi, R., Slim-Shimi, N., Marignac, C., Hatira, N., Gasquet, D., Renac, C., Soumarin, A., Gleeson, S., 2012, The origin of sulfate mineralization and the nature of the BaSO4-SrSO4 solid-solution series in the Ain Allega and El Aguiba ore deposits, Northern Tunisia. Ore Geology Reviews, 48, 165–179.
]7[ Alaminia, Z.; Sharifi, M., 2018, Geological, geochemical and fluid inclusion studies on the evolution of barite mineralization in the Badroud area of Iran. Ore Geology Reviews, 92, 613-626.
]8[ Alaminia, Z., Tadayon, M., Griffith, E.M., Solé, J., Corfu, F., 2021, Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran, Chemical Geology 566, 120084.
]9 [Alavi, M., 1991, Tectonic map of the Middle East 1:5000000, Geological Survey of Iran: Tehran, Iran.
]10 [Alexander, B.W., Bau, M., Andersson, P., Dulski, P., 2008, Continentally derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta 72, 378–394.
]11[ Bao, S.X., Zhou, H.Y., Peng, X.T., Ji, F.W., Yao, H.Q., 2008, Geochemistry of REE and yttrium in hydrothermal fluids from the Endeavour segment, Juan de Fuca Ridge. Geochemical Journal 42, 359–370.
]12[ Bau, M., Dulski, P., 1996, Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79, 37–55.
]13[ Bau, M., Möller, P., 1991, REE systematics as source of information on minerogenesis. In Pagel M. and Leroy J.L. (eds.): Source, transport and deposition of metals, Balkema, Rotterdam, 17-20.
]14[ Bau, M., Möller, P., 1992, Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology 45, 231-246.
]15[ Boroughs, S., Wolff , J.A., Ellis, B.S., Bonnichsen, B., Larson, P.B., 2012, Evaluation of models for the origin of Miocene low-δ18O rhyolites of the Yellowstone/Columbia River Large Igneous Province. Earth and Planetary Science Letters 313–314, 45–55.
]16[ Bouabdellah, M.; Sangster, D.F.; Leach, D.L.; Brown, A.C.; Johnson, C.A.; Emsbo, P., 2012, Genesis of the Touissit-Bou Beker Mississippi Valley-type district (Morocco-Algeria) and its relationship to the Africa-Europe collision. Economic Geology, 107, 117–146.
]17[ Boynton, W.V., 1984, Geochemistry of the rare earth elements: meteorite studies. In REE Geochemistry, Henderson, P., Ed.; Elsevier: Amsterdam, pp. 63–114.
]18[ Carranza, E.J.M., 2011, Thematic Issue: Isotopic Geochemistry of Mineral Deposits-Implication for Ore Genesis. Resource Geology 61, 313–315.
]19 [Champion, D.C., Huston, D.L., 2016, Radiogenic isotopes, ore deposits and metallogenic terranes: Novel approaches based on regional isotopic maps and the mineral systems concept, Ore Geology Reviews 76, 229-256.
]20[Clark, S.H.B.; Poole, F.G.; Wang, Z., 2004. Comparison of some sediment hosted, stratiform barite deposits in China, the United States, and India. Ore Geology Reviews 24, 85–101.
]21[ Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakou, H.; Zak, I., 1980, The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28, 199–260.
]22 [Cole, C.S., James, R.H., Connelly, D.P., Hathorne, E.C., 2014, Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system. Geochimica et Cosmochimica Acta 140, 20-38.
]23[ Derakhshi, M.G.; Hosseinzadeh, M.R.; Moayyed, M.; Maghfouri, S., 2019, Metallogenesis of Precambrian SEDEX-type Barite-(Pb-Cu-Zn) deposits in the Mishu mountain, NW Iran: Constrains on the geochemistry and tectonic evolution of mineralization. Ore Geology Reviews 107, 310-335.
]24[ Dill, H.G., 2010, The ‘chessboard’ classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Science Reviews 100, 1–420.
]25[ Djoković, I.; Dimitrijević, M. N., 1972, Baghin quadrangle map 1: 100000. Geological Survey of Iran: Tehran, Iran.
]26[ Dora, M.L., Roy, S.K., Khan, M., Randive, K., Kanungo, D.R., Barik, R., Kaushik, C.S., Bari, S.H., Pattanayak, R.S., Krishna, K.V.S., Mayachar, G.K., 2022, Rift-induced structurally controlled hydrothermal barite veins in 1.6 Ga granite, Western Bastar Craton, Central India: Constraints from fluid inclusions, REE geochemistry, sulfur and strontium isotopes studies. Ore Geology Reviews, 148, 105050.
]27[ Dunn, K., Daniel, E., Shuler, P. J., Chen, H. J., Tang, Y., Yen, T. F., 1999, Mechanisms of surface precipitation and dissolution of barite: a morphology approach. Journal of Colloid and Interface Science, 214, 427–437.
]28[ Ebunu, A.I.; Olanrewaju, Y.A.; Ogolo, O.; Adetunji, A.R.; Onwualu, A.P., 2021, Barite as an industrial mineral in Nigeria: occurrence, utilization, challenges, and prospects. Heliyon 7, e07365.
]29[ Ehya, F., 2012, a. Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran. Mineralogy and Petrology 104, 81-93.
]30[ Ehya, F., 2012, b. Variation of mineralizing fluids and fractionation of REE during the emplacement of the vein-type fluorite deposit at Bozijan, Markazi Province, Iran. Journal of Geochemical Exploration 112, 93-106.
]31[ Ehya, F., 2014, The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran: Isotope (C, O, S, Pb) geochemistry and ore genesis. Mineralogy and Petrology 108, 123–136.
]32[ Ehya, F., Mazraei, S.M., 2017, Hydrothermal barite mineralization at Chenarvardeh deposit, Markazi Province, Iran: Evidences from REE geochemistry and fluid inclusions. Journal of African Earth Sciences 134, 299-307.
]33[ Elswick, E.R., Maynard, J.B., 2014, Bedded Barite Deposits: Environments of Deposition, Styles of Mineralization, and Tectonic Settings. In: Holland, H.D., Turekian, K.K. (Eds.) Treatise on Geochemistry (Second Edition), Elsevier, pp. 629-656.
]34[ Forjanes, P., Astilleros, J. M., Fernández-Díaz, L., 2020, The formation of barite and celestite through the replacement of gypsum. Minerals, 10, 189.
]35[ Galindo, C.; Tornos, F.; Darbyshire, D.P.F.; Casquet, C., 1994, The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study. Chemical Geology 112, 351-364.
]36[ Gaškov, M., Sepp H., Pani, T., Paiste, P., Kirsimäe K., 2017, Barite mineralization in Kalana speleothems, Central Estonia: Sr, S and O isotope characterization. Estonian Journal of Earth Sciences 66, 130–141.
]37[ Ghorbani, M., 2013, The Economic Geology of Iran, Mineral Deposits and Natural Resources. Springer: Dordrecht, 542 p.
]38[ Gonzalez-Muñoz, M.T., Martinez-Ruiz, F., Morcillo, F., Martin-Ramos, J.D., Paytan, A., 2012, Precipitation of barite by marine bacteria: A possible mechanism for marine barite formation. Geology 40; 675-678.
]39[ Guichard, F., Church, T.M., Treuil, M., Jaffrezic, H., 1979, Rare earths in barites: distribution and effects on aqueous partitioning. Geochimica et Cosmochimica Acta 49, 983-997.
]40[ Greaves, M.J., Elderfield, H., Klinkhammer, G.P., 1989, Determination of the rare earth elements in natural water by isotope-dilution mass spectrometry. Analytica Chimica Acta 218, 265–280.
]41[ Griffith, E.M., Paytan, A., 2012, Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817-1835.
]42[ Griffith, E. M., Paytan, A., Wortmann, U. G., Eisenhauer, A., Scher, H. D., 2018, Combining metal and nonmetal isotopic measurements in barite to identify mode of formation. Chemical Geology, 500, 148-158.
]43[ Hanor, J.S., 2000, Barite-celestite geochemistry and environments of formation. In: Alpers CN, Jambor JL, Nordstorm DK (eds) Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, vol. 40. Mineralogical Society of America and The Geochemical Society, Washington, D.C., PP. 193-263.
]44 [Hein, J.R., Zierenberg, R.A., Maynard, J.B. Hannington, M.D., 2007, Multifarious barite-forming environments along a rifted continental margin, Southern California Borderland. Deep-Sea Research II 54, 1327–1349.
]45[ Hodaie Keveshk, H., Ehya, F., Rostami Paydar, G., Maleki Kheymehsari, S., 2021, Rare earth elements geochemistry, O and S isotopic compositions, and microthermometric data of barite from the Kuh-Ghalagheh deposit, Markazi Province, Iran. Applied Geochemistry 135, 105-128.
]46 [Hodaei Keveshk, H., Ehya, F., Paydar, G.R., Maleki Kheymehsari, S., 2022, The Kohlou barite deposit, Markazi Province, Iran: studies on rare earth element geochemistry, O and S isotopes, and fluid inclusions. Carbonates and Evaporites 37, 38.
]47[ Hoefs, J., 2009, Stable isotope geochemistry, 6th edn. Springer-Verlag, Berlin, 285 P.
]48[ Johnson, C. A., Kelley, K. D., Leach, D. L., 2004, Sulfur and oxygen isotopes in barite deposits of the western Brooks Range, Alaska, and implications for the origin of the Red Dog massive sulfide deposits. Economic Geology, 99, 1435–1448.
]49[Johnson, C.A., Emsbo, P., Poole, F.G., Rye, R.O., 2009, Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits. Geochimica et Cosmochimica Acta 73, 133–147.
]50[ Johnson, C.A.; Piatak, N.M.; Miller, M.M., 2017, Barite (barium). In Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J.; DeYoung, J.H.; Seal, R.R.; Bradley, D.C. Eds.; U. S. Geological Survey Professional Paper 1802, pp. D1–D18.
]51[ Jones, H.D., Kesler, S.E., Furman, F.C., Kyle, J.R., 1996, Sulphur isotope geochemistry of Southern Appalachian Mississippi Valley-type deposits. Economic Geology, 91, 355–367.
]52[ Kharaka, Y. K., Hanor, J. S., 2003, Deep fluids in the continents: I. Sedimentary basins. Treatise on Geochemistry, 5, 605.
]53[ Kogel J.E., Trivedi N., Barker, J.M., Krukowski S.T., 2006, Industrial Minerals & Rocks-Commodities, Markets and Uses, 7th edition, Society for Mining, Metallurgy and Exploration Inc., 1568pp.
]54[ Labe, N.A., Ogunleye, P.O., Ibrahim, A.A., 2018, Field occurrence and geochemical characteristics of the baryte mineralization in Lessel and Ihugh areas, Lower Benue Trough, Nigeria. Journal of African Earth Sciences 142, 207-217.
]55[ Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D., Gardoll, S.J., 2010, Sediment-hosted lead–zinc deposits in Earth history. Economic Geology, 105, 593–625.
]56[ Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., Walters, S., 2005, Sediment-hosted lead–zinc deposits: a global perspective. In: Hedenquist, J.W., et al. (Eds.), Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Inc., Littleton, Co., pp. 561–607.
]57[ Liu, W.; An, Y.; Qu, Q.; Li, P.; Zhang, L.; Li, C.; Wei, S.; Zhou, H.; Chen, J., 2023, An efficient method for separation of REEs from Ba for accurate determination of REEs contents in Ba-rich samples by ICP-MS. Journal of Analytical Atomic Spectrometry.
]58[ Machel, H.G., 1987, Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction. Geology, 15, 936–940.
]59[ Machel, H.G., Krouse, H.R., Sassen, R., 1995, Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10, 373–389.
]60[ McRae, M.E. Barite. 2018, Minerals Yearbook, BARITE [ADVANCE RELEASE], U.S. Geological Survey: October 2021.
]61[ McRae, M.E., 2022, Barite. Mineral Commodity Summaries, U.S. Geological Survey: January.
]62[ Martinez-Ruiz, F., Paytan, A., Gonzalez-Munoz, M. T., Jroundi, F., Abad, M. M., Lam, P. J., Bishop, J. K. B., Horner, T. J., Morton, P. L., Kastner, M., 2019, Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chemical Geology, 511, 441–451.
]63[ McDonough, W.F., Sun, S.S., 1995, The composition of the earth. Chemical Geology 120, 223–253.
]64[ McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy and Geochemistry 21, 169–200.
]65[ Michard, A., 1989, Rare earth element systematics in hydrothermal fluids, Geochimica et Cosmochimica Acta 53, 745-750.
]66[ Mills, P., 2006, Barium minerals. In: Kogel JE, Trivedi NC, Barker JM, Krukowski ST (eds) Industrial minerals and rocks: Commodities, markets, and uses. 7th ed., Society for Mining, Metallurgy & Exploration, pp 219–227.
]67[ Möller, P., 1998, Europium anomalies in hydrothermal minerals: kinetic versus thermodynamic interpretation. Proceedings of the Ninth Quadrennial IAGOD Symposium. Schweizerbart, Stuttgart, pp. 239–246.
]68[ Nejadhadad, M.; Taghipour, B.; Lentz, D.R., 2023, Implications of multiple fluids in the deposition of Pb-Zn-Ba deposits in the Alvand Mountain, Golpayegan, Iran: evidence from fluid inclusions and O, C, S isotopes, Ore Geology Reviews.
]69[ Okubo, J., Klyukin, Y. I., Warren, L. V., Sublett, D. M., Bodnar, R. J., Gill, B. C., Xiao, S., 2020, Hydrothermal influence on barite precipitates in the basal Ediacaran Sete Lagoas cap dolostone, Sao Francisco Craton, central Brazil. Precambrian Research, 340, 105628.
]70[ Paytan, A., Kastner, M., Campbell, D., Thiemens, M.H., 1998, Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282, 1459–1462.
]71[ Paytan, A., Mearon, S., Cobb, K., Kastner, M., 2002, Origin of marine barite deposits: Sr and S isotope characterization. Geology, 30, 747–750.
]72[ Rajabzadeh, M.A., 2007, A fluid inclusion study of a large MVT barite–fluorite deposit: Komshecheh, Central Iran. Iranian Journal of Science and Technology, Transaction A, 31, 73–87.
]73[ Ramezani, J.; Tucker, R.D., 2003, The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science 303, 622–665.
]74[ Saintilan, N.J., Spangenberg, J.E., Chiaradia, M., Chelle-Michou, C., Stephens, M.B., Fontboté, L., 2019, Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization. Scientific Reports, 9, 8283.
]75[ Schaefer, M., 2002, Paleoproterozoic Mississippi Valley-type Pb-Zn deposits of the Ghaap Group, Transvaal Supergroup in Griqualand West, South Africa, Ph.D theses, Rand Afrikaans University, 367 pp.
Seal, R.R., 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61, 633–677.
]76[ Seal II., R.R., Alpers, C.N., Rye, R.O., 2000, Stable Isotope Systematics of Sulfate Minerals. In: Alpers, C.N., Jambor, J.L., Nordstrom, D.K. (Eds.), Sulfate minerals: crystallography, geochemistry, and environmental significance. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington D.C., pp. 541–602.
]77[ Sharifiyan, S.; Hosseinzadeh, M.R.; Maghfouri, S.; Moayyed, M., 2021, Sediment hosted stratiform barite – (Cu-Zn-Pb) deposits in the southwest Mahabad, Iran; implications for geology, ore textural, compositional, and S-O isotopes geochemistry. Ore Geology Reviews 139, 104549.
]78[Shields, G., Kimura, H., Yang, J., Gammon, P., 2004. seawater: new francolite-bound sulphate δ34S data and a critical appraisal of the existing record. Chemical Geology 204, 163–182.
]79[ Sverjensky, D.A., 1984, Europium redox equilibria in aqueous solutions. Earth and Planetary Science Letters 67, 70-78.
]80[ Taylor, H.P., 1968, The oxygen isotope geochemistry of igneous rocks. Contributions to Mineralogy and Petrology 19, 1–71.
]81[ Taylor, S.R.; McLennan, S.M., 1985, The continental crust: its composition and its evolution. Blackwell, Oxford, 312p.
]100[USGS (U.S. Geological Survey) (2023) Mineral commodity summaries, January 2023: U.S. Geological Survey. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-barite.pdf
]82[ Yang, X., Zhang, Z., Duan, S., 2018, Origin of the Mesoproterozoic Jingtieshan bedded barite deposit, North Qilian Mountains, NW China: Geochemical and isotope (O, S, Sr) evidence. Geological Journal 53, 21-32.
]83[Zarasvandi, A., Zaheri, N., Pourkaseb, H., Chrachi, A., Bagheri, H., 2014, Geochemistry and fluid-inclusion microthermometry of the Farsesh barite deposit. Iran. Geologos 20, 201-214.
]84[ Zhou, X., Chen, D., Dong, S., Zhang, Y., Guo, Z., Wei, H., Yu, H., 2015, Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: Implications for barium and sulfur cycling in the earliest Cambrian. Precambrian Research, 263, 79-