طراحی مدل پویای هوشمند نگهداری و تعمیرات پیشگیرانه در صنعت نساجی و پوشاک در تعامل با تولید به کمک شبیهسازی)مطالعه موردی کارخانجات نساجی بروجرد(
محورهای موضوعی : مدیریتسیدشهرام فاطمی 1 , مهرداد جوادی 2 , اسماعیل نجفی 3 , امیر عزیزی 4
1 - دانشجوی دکترای مهندسی صنایع، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران. آدرس پست الکترونیکی:
fatemi.shahram@yahoo.com
2 - نویسنده مسئول، دانشیار، گروه مهندسی مکانیک، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران. آدرس پست الکترونیکی:
mjavadi@azad.ac.ir
3 - دانشیار مهندسی صنایع، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران. آدرس پست الکترونیکی:
najafi1515@yahoo.com
4 - استادیار مهندسی صنایع، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران. آدرس پست الکترونیکی:
azizi@srbiau.ac.ir
کلید واژه: نگهداری و تعمیرات پیشگیرانه, کلمات کلیدی: پویایی سیستم, شبیهسازی,
چکیده مقاله :
چکیدههدف پژوهش"طراحی مدل پویای هوشمند نت پیشگیرانه با بهرهگیری از شبیهسازی در تعامل با تولید" براساسمستندات صنایع نساجی و پوشاک تحت عنوان مدل نت پیشگیرانه پویا است. جهت محاسبات پویایی سیستم ازنرمافزار ونسیم و داده تحقیق بر اساس نمونه 2111 تایی از دادهها و گزارشهای صنایع نساجی و پوشاک طی سالهای1796 تا پایان 1411 و کارخانجات نساجی بروجرد به عنوان محل اجرای طرح به صورت نیمسال تهیه شده است.1 % و در سال / نتایج تحقیق نشاندهنده نرخ رشد "محیط کار در نت" کمترین مقدار رشد در سال 1796 حدود 27 % و در سال 1411 به رشد بالاتری، یعنی 6 % رسیده است. نرخ رشد "فنآوری در نت" مقدار / 1798 به رشد 1%8/ 1% و در سال 1798 به رشد 1 % و در سال 1411 به رشد بالاتری، یعنی 1 / رشد متوسطی در سال 1796 حدود 2رسیده است، نرخ رشد پویای متغیر " استراتژی در نت" بیشترین مقدار رشد در سال 1796 حدود 1 % و در سال9 % )حالت بهینه( رسیده / 1798 به رشد 6 % و در سال 1411 به میزان رشد بالاتری، یعنی 1 است. نرخ رشد پویای1% و در سال 1798 به رشد 1 % و در سال / متغیر " کارکنان در نت" رشد مطلوبی را داشته در سال 1796 حدود 28 % رسیده است. در نهایت، نرخ رشد پویای متغیر " کیفیت در نت " رشد خوبی را / 1411 به رشد بالاتری، یعنی 16 % رسیده / 1 % و در سال 1798 به رشد 4 % و در سال 1411 به رشد بالاتری، یعنی 1 / داشته در سال 1796 حدود 2است.
AbstractThe aim of the research is "designing a smart dynamic model of preventive net using simulation in interaction with production" based on the documentation of textile and clothing industries under the title of dynamic preventive net model. In order to calculate the dynamics of the system, Vansim software and research data were prepared based on a sample of 2000 data and reports from the textile and clothing industries during the years 2016 to the end of 2014 and the textile factories of Borujerd as the location of the project on a semi-annual basis. The results of the research show that the growth rate of "working environment on the net" has reached the lowest growth rate of 1.2% in 2016 and 3.5% in 2018 and a higher growth of 6% in 2014. The growth rate of "Internet technology" has reached an average growth rate of 1.2% in 1396, 5% in 1398, and a higher growth of 8.5% in 1400. The dynamic growth rate of the variable "Strategy in Net" has reached the maximum growth rate of 1% in 2016, 6% in 2018, and a higher rate of growth in 2014, i.e. 9.5% (optimal state).
منابع
. Maintenance practices in Swedish industries: Survey resultsAlsyouf, I. 2009. -International Journal of Production Economics, 121 (1), 212-223. doi: http: //dx.doi.org/10.1016/j.ijpe.2009.05.005
- Arnetz, J. E., Zhdanova, L., & Arnetz, B. B. (2016). Patient involvement: a new source of stress in health care work?. Health communication, 31(12), 1566-1572.
-Amiri, Farzad; Hadith of Fayzi Kamrah; Mena Khameei and Elham Nazari, 2016, The Role of Information Management (IM) and Resource Management System (ERP) in Strategic Knowledge Management and Decision Making, Second National Engineering Management Conference, Astana Ashrafieh, Mehr Astan Institute of Higher Education, Gilan. (in Persian)
-Bangalore, P., & Tjernberg, L. B. 2015. An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6 (2), 980-987.
- Bell, M. A. 2015. Methods for enhancing system dynamics modelling: state-space models, data-driven structural validation & discrete event simulation. (PhD), Lancaster University,
- Brailsford, S., Desai, S. M., & Viana, J. 2010. Towards the holygrail: Combining System dynamics and discrete-event simulation in healthcare. Paper presented at the Proceedings of the Winter Simulation Conference
- Droguett, E. L., Jacinto, C. M. C., Garcia, P. A. A., & Moura, M. 2006. Availability assessment of onshore oil fields. Paper presented at the Proceedings of the European Safety and Reliability Conference 2006, ESREL 2006 – Safety and Reliability for Managing Risk.
- Eti, M.C. & Ogaji, Stephen & Probert, S.D.. (2006). Reducing the cost of preventive maintenance (PM) through adopting a proactive reliability-focused culture. Applied Energy. 83. 1235-1248.
- Garcia , Kyounghyun, Minh Chau Nguyen, and Heesun Won. 2015. "Web-based collaborative big data analytics on big data as a service platform." 17th International Conference on Advanced Communication Technology.
- Ghasadi, Melika, 2017, Effective management of change: a requirement for the successful implementation of manufacturing company strategies, National conference of new models in management and manufacturing company with the approach of supporting national entrepreneurs, Tehran, Nagareh Higher Education Institute (in Persian)
- Haidrianizadeh, Abuzar and Seyed Mahmoud Zanjeerchi, 2016, improving the comprehensive effectiveness of machinery by using preventative maintenance and repairs: selected press machines of Yazd Pitch Company, First International Congress of Engineering Sciences 2017, Shiraz, Kharazmi Institute of Science and Technology (in Persian)
- Kauppi, K, Longoni, A. 2016. Managing country disruption risks and improving operational performance: risk management along integrated supply chains, nternational Journal of Int.J. Production Economics, vol. 182, PP.484-495.
- Kováč, J., Stejskal, T., & Valenčík, Š. (2013). Virtual Reality in the Maintenance of Machinery and Equipment. Applied Mechanics and Materials, 282, 269–273.
فصلنامه مطالعات کمی در مدیریت...................................................................... / 113
- Laks, Paul & Wim J. C. Verhagen. 2018. Identification of optimal preventive maintenance decisions for composite components. Transportation Research Procedia, Volume 29, 2018, Pages 202-212
- Liyanage, J. and Kumar, U. (2003), "Towards a value‐based view on operations and maintenance performance management", Journal of Quality in Maintenance Engineering, Vol. 9 No. 4, pp. 333-350.
- Rahimi, Mokhtar and Mehrdad Nikbakht, 2017, Identification of key factors affecting the efficiency and cost reduction of the mechanized management system of maintenance and preventive maintenance in Isfahan Region 2 Gas Transmission Company, 6th National Conference on New Findings in Industrial Management and Engineering with an emphasis on entrepreneurship in industries. , Payam Noor University, Tehran. (in Persian)
- Sgarbossa, Fabio, 2018. Impacts of weibull parameters estimation on preventive maintenance cost. IFAC-PapersOnLine, Volume 51, Issue 11, 2018, Pages 508-513 - Fadaeefath Abadi, M., Haghighat, F., & Nasiri, F. (2020). Data center maintenance: applications and future research directions. Facilities, 38(9/10), 691-714..
- Song, Jian, et al. 2018. Dynamic Simulation of the Group Behavior under Fire Accidents Based on System Dynamics. Procedia Engineering, Volume 211, 2018, Pages 635-643. - Vlasov, A. I., Echeistov, V. V., Krivoshein, A. I., Shakhnov, V. A., Filin, S. S., & Migalin, V. S. (2018). An information system of predictive maintenance analytical support of industrial equipment. Journal of Applied Engineering Science, 16(4), 515-522.
- Wan, Shan & Li, Dongbo & Gao, James & Roy, Rajkumar & He, Fei. (2018). A collaborative machine tool maintenance planning system based on content management technologies. The International Journal of Advanced Manufacturing Technology. 94. 1639-1653. 10.1007/s00170-016-9829-0.
- Woodhouse P., & Tjernberg, L. B. 2015. An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6 (2), 980-987.
- Xue, Chaogai &Yawen Xu. 2017. Influence Factor Analysis of Enterprise IT Innovation Capacity Based on System Dynamics. Procedia Engineering, Volume 174, 2017, Pages 232-239
منابع
. Maintenance practices in Swedish industries: Survey resultsAlsyouf, I. 2009. -International Journal of Production Economics, 121 (1), 212-223. doi: http: //dx.doi.org/10.1016/j.ijpe.2009.05.005
- Arnetz, J. E., Zhdanova, L., & Arnetz, B. B. (2016). Patient involvement: a new source of stress in health care work?. Health communication, 31(12), 1566-1572.
-Amiri, Farzad; Hadith of Fayzi Kamrah; Mena Khameei and Elham Nazari, 2016, The Role of Information Management (IM) and Resource Management System (ERP) in Strategic Knowledge Management and Decision Making, Second National Engineering Management Conference, Astana Ashrafieh, Mehr Astan Institute of Higher Education, Gilan. (in Persian)
-Bangalore, P., & Tjernberg, L. B. 2015. An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6 (2), 980-987.
- Bell, M. A. 2015. Methods for enhancing system dynamics modelling: state-space models, data-driven structural validation & discrete event simulation. (PhD), Lancaster University,
- Brailsford, S., Desai, S. M., & Viana, J. 2010. Towards the holygrail: Combining System dynamics and discrete-event simulation in healthcare. Paper presented at the Proceedings of the Winter Simulation Conference
- Droguett, E. L., Jacinto, C. M. C., Garcia, P. A. A., & Moura, M. 2006. Availability assessment of onshore oil fields. Paper presented at the Proceedings of the European Safety and Reliability Conference 2006, ESREL 2006 – Safety and Reliability for Managing Risk.
- Eti, M.C. & Ogaji, Stephen & Probert, S.D.. (2006). Reducing the cost of preventive maintenance (PM) through adopting a proactive reliability-focused culture. Applied Energy. 83. 1235-1248.
- Garcia , Kyounghyun, Minh Chau Nguyen, and Heesun Won. 2015. "Web-based collaborative big data analytics on big data as a service platform." 17th International Conference on Advanced Communication Technology.
- Ghasadi, Melika, 2017, Effective management of change: a requirement for the successful implementation of manufacturing company strategies, National conference of new models in management and manufacturing company with the approach of supporting national entrepreneurs, Tehran, Nagareh Higher Education Institute (in Persian)
- Haidrianizadeh, Abuzar and Seyed Mahmoud Zanjeerchi, 2016, improving the comprehensive effectiveness of machinery by using preventative maintenance and repairs: selected press machines of Yazd Pitch Company, First International Congress of Engineering Sciences 2017, Shiraz, Kharazmi Institute of Science and Technology (in Persian)
- Kauppi, K, Longoni, A. 2016. Managing country disruption risks and improving operational performance: risk management along integrated supply chains, nternational Journal of Int.J. Production Economics, vol. 182, PP.484-495.
- Kováč, J., Stejskal, T., & Valenčík, Š. (2013). Virtual Reality in the Maintenance of Machinery and Equipment. Applied Mechanics and Materials, 282, 269–273.
فصلنامه مطالعات کمی در مدیریت...................................................................... / 113
- Laks, Paul & Wim J. C. Verhagen. 2018. Identification of optimal preventive maintenance decisions for composite components. Transportation Research Procedia, Volume 29, 2018, Pages 202-212
- Liyanage, J. and Kumar, U. (2003), "Towards a value‐based view on operations and maintenance performance management", Journal of Quality in Maintenance Engineering, Vol. 9 No. 4, pp. 333-350.
- Rahimi, Mokhtar and Mehrdad Nikbakht, 2017, Identification of key factors affecting the efficiency and cost reduction of the mechanized management system of maintenance and preventive maintenance in Isfahan Region 2 Gas Transmission Company, 6th National Conference on New Findings in Industrial Management and Engineering with an emphasis on entrepreneurship in industries. , Payam Noor University, Tehran. (in Persian)
- Sgarbossa, Fabio, 2018. Impacts of weibull parameters estimation on preventive maintenance cost. IFAC-PapersOnLine, Volume 51, Issue 11, 2018, Pages 508-513 - Fadaeefath Abadi, M., Haghighat, F., & Nasiri, F. (2020). Data center maintenance: applications and future research directions. Facilities, 38(9/10), 691-714..
- Song, Jian, et al. 2018. Dynamic Simulation of the Group Behavior under Fire Accidents Based on System Dynamics. Procedia Engineering, Volume 211, 2018, Pages 635-643. - Vlasov, A. I., Echeistov, V. V., Krivoshein, A. I., Shakhnov, V. A., Filin, S. S., & Migalin, V. S. (2018). An information system of predictive maintenance analytical support of industrial equipment. Journal of Applied Engineering Science, 16(4), 515-522.
- Wan, Shan & Li, Dongbo & Gao, James & Roy, Rajkumar & He, Fei. (2018). A collaborative machine tool maintenance planning system based on content management technologies. The International Journal of Advanced Manufacturing Technology. 94. 1639-1653. 10.1007/s00170-016-9829-0.
- Woodhouse P., & Tjernberg, L. B. 2015. An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6 (2), 980-987.
- Xue, Chaogai &Yawen Xu. 2017. Influence Factor Analysis of Enterprise IT Innovation Capacity Based on System Dynamics. Procedia Engineering, Volume 174, 2017, Pages 232-239