مروری بر سلولهای خورشیدی پروسکایت هالید فلز-آلی: ساختار، معماری و روشهای ساخت
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو مواد
1 - استادیار، گروه فیزیک، واحد دزفول، دانشگاه آزاداسلامی، دزفول ، ایران
کلید واژه: سلولهای خورشیدی, پروسکایت, هالید فلز-آلی, معماری سلول, لایهنشانی مبتنی بر محلول, لایهنشانی بخار,
چکیده مقاله :
در سالهای اخیر در مسیر توسعه فناوریهای در حال ظهور مرتبط با انرژیهای تجدیدپذیر، سلولهای خورشیدی پروسکایت مرکز توجه بسیاری از تحقیقات علوم کاربردی و صنایع الکترونیک نوری بودهاند. در این بین، مواد پروسکایت هالید فلز-آلی، مشخصههای قابلتوجه بسیاری از خود نشان دادهاند ازجمله؛ دامنهی جذب نور بالا، گافنواری قابل تنظیم، انرژی پیوند اکسیتون کم و طولپخش بلند حاملهای بار که این ویژگیها باعث میشود مواد مذکور در فناوریهای نوظهور فتوولتائیک جایگاه ویژهای به خود اختصاص دهند. در این تحقیق، با هدف ایجاد درک بهتر و دستیابی به بینش کاملتر در خصوص سلولهای خورشیدی مبتنی بر مواد پروسکایت هالید فلز-آلی، بخشی از مرور جامع بر این نوع فناوری که شامل معرفی ساختار بلوری مواد پروسکایت، مطالعه انواع معماری و آشنایی با روشهای ساخت سلولهای خورشیدی پروسکایت مبتنی بر سرب است مورد بررسی قرار میگیرد.
[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society, 131 (2009) 6050-6051.
[2] National Renewable Energy Laboratory (NREL) Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed on September 9, 2022).
[3] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific reports, 2 (2012) 1-7.
[4] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347 (2015) 519-522.
[5] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm, The Journal of Physical Chemistry Letters, 5 (2014) 1004-1011.
[6] A.J. Neukirch, I.I. Abate, L. Zhou, W. Nie, H. Tsai, L. Pedesseau, J. Even, J.J. Crochet, A.D. Mohite, C. Katan, Geometry Distortion and Small Polaron Binding Energy Changes with Ionic Substitution in Halide Perovskites, The journal of physical chemistry letters, 9 (2018) 7130-7136.
[7] C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Advanced materials, 26 (2014) 1584-1589.
[8] F. Cao, L. Meng, M. Wang, W. Tian, L. Li, Gradient Energy Band Driven High‐Performance Self‐Powered Perovskite/CdS Photodetector, Advanced Materials, 31) 2019) .
[9] N. Zhang, K. Wang, H. Wei, Z. Gu, W. Sun, J. Li, S. Xiao, Q. Song, Postsynthetic and selective control of lead halide perovskite microlasers, The journal of physical chemistry letters, 7 (2016) 3886-3891.
[10] Z. Wei, J. Xing, The Rise of Perovskite Light-Emitting Diodes, The journal of physical chemistry letters, 10 (2019) 3035-3042.
[11] P. Wu, Y. Xiong, L. Sun, G. Xie, L. Xu, Enhancing thermoelectric performance of the CH3NH3PbI3 polycrystalline thin films by using the excited state on photoexcitation, Organic Electronics, 55 (2018) 90-96.
[12] M. Grätzel, The light and shade of perovskite solar cells, Nature Materials, 13 (2014) 838-842.
[13] L. Zhu, Accelerating Content-Based Image Retrieval via GPU-Adaptive Index Structure, The Scientific World Journal, 2014 (2014) 829059.
[14] N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Materials today, 18 (2015) 65-72.
[15] T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics, Energy & Environmental Science, 7 (2014) 2518-2534.
[16] D. Weber, CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure, 33 (1978) 1443-1445.
[17] S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, H.J. Snaith, Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer, The journal of physical chemistry letters, 6 (2015) 432-437.
[18] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395-398.
[19] H.J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells, The Journal of Physical Chemistry Letters, 4 (2013) 3630-3623.
[20]A. Poglitsch, D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy, The Journal of chemical physics, 87 (1987) 6373-6378.
[21] W. Liu, Y. Liu, J. Wang, C. Wu, C. Liu, L. Xiao, Z. Chen, S. Wang, Q. Gong, Twin Domains in Organometallic Halide Perovskite Thin-Films, Crystals, 8 (2018)
[22] W. Geng, L. Zhang, Y.-N. Zhang, W.-M. Lau, L.-M. Liu, First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics, The Journal of Physical Chemistry C, 118 (2014) 19565-19571.
[23] P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy & Environmental Science, 7 (2014) 2448-2463.
[24] P.P. Boix, S. Agarwala, T.M. Koh, N. Mathews, S.G. Mhaisalkar, Perovskite Solar Cells: Beyond Methylammonium Lead Iodide, The Journal of Physical Chemistry Letters, 6 (2015) 898-907.
[25] L. Yang, A.T. Barrows, D.G. Lidzey, T. Wang, Recent progress and challenges of organometal halide perovskite solar cells, Reports on Progress in Physics, 79 (2016) 026501.
[26] V.M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften, 14 (1926) 477-485.
[27] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites, Acta Crystallographica Section B: Structural Science, 64 (2008) 702-707.
[28] M. Rini, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R.W. Schoenlein, A. Cavalleri, Control of the electronic phase of a manganite by mode-selective vibrational excitation, Nature, 449 (2007) 72-74.
[29] S. Zhaoning, C.W. Suneth, B.P. Adam, J.H. Michael, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications, Journal of Photonics for Energy, 6 (2016) 1-23.
[30] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319.
[31] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338 (2012) 643-647.
[32] M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H.A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, V. Dalal, Defect density and dielectric constant in perovskite solar cells, Applied Physics Letters, 105 (2014) 153502.
[33] G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells, Advanced Functional Materials, 24 (2014) 151-157.
[34] Z. Yang, W.-H. Zhang, Organolead halide perovskite: A rising player in high-efficiency solar cells, Chinese Journal of Catalysis, 35 (2014) 983-988.
[35] J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS nano, 8 (2014)1680-1674.
[36] L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, Journal of the American Chemical Society, 134 (2012) 17396-17399.
[37] P. Nagarjuna, K. Narayanaswamy, T. Swetha, G.H. Rao, S.P. Singh, G.D. Sharma, CH3NH3PbI3 perovskite sensitized solar cells using a DA copolymer as hole transport material, Electrochimica Acta, 151 (2015) 21-26.
[38] H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, 7 (2014) 80-85.
[39] K. Rakstys, C. Igci, M.K. Nazeeruddin, Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells, Chemical Science, 10 (2019) 6748-6769.
[40] T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells, Solar Energy Materials and Solar Cells, 133 (2015) 8-14.
[41] M.S.G. Hamed, G.T. Mola, Mixed Halide Perovskite Solar Cells: Progress and Challenges, Critical Reviews in Solid State and Materials Sciences, 45 (2020) 85-112.
[42] J.-H. Im, H.-S. Kim, N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, APL Materials, 2 (2014) 081510.
[43] S. Aharon, B.E. Cohen, L. Etgar, Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell, The Journal of Physical Chemistry C, 118 (2014) 17160-17165.
[44] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy & Environmental Science, 7 (2014) 2619-2623.
[45] G. Li, K.L. Ching, J.Y.L. Ho, M. Wong, H.S. Kwok, Identifying the optimum morphology in high‐performance perovskite solar cells, Advanced Energy Materials, 5 (2015) 1401775.
[46] D.B. Mitzi, M.T. Prikas, K. Chondroudis, Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique, Chemistry of Materials, 11 (1999) 542-544.
[47] P.-S. Shen, Y.-H. Chiang, M.-H. Li, T.-F. Guo, P. Chen, Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction, APL Materials, 4 (2016) 091509.
[48] O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Perovskite solar cells employing organic charge-transport layers, Nature Photonics, 8 (2014) 128-132.
[49] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Advanced Materials, 26 (2014) 6647-6652.
[50] D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, C. Li, Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition, Journal of Materials Chemistry A, 3 (2015) 9401-9405
[51] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, H.-W. Lin, Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum, Advanced Materials,28 (2016)7013-7019.
[52] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, Journal of the American Chemical Society, 136 (2014) 622-625.
[53] R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition, The Journal of Physical Chemistry C, 119 (2015) 3545-3549.
[54] M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang, Y. Qi, High performance perovskite solar cells by hybrid chemical vapor deposition, Journal of Materials Chemistry A, 2 (2014) 18742-18745.
[55] S. Das, B. Yang, G. Gu, P.C. Joshi, I.N. Ivanov, C.M. Rouleau, T. Aytug, D.B. Geohegan, K. Xiao, High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing, ACS Photonics, 2 (2015) 680-686.
[56] D.J. Lewis, P. O'Brien, Ambient pressure aerosol-assisted chemical vapour deposition of (CH3NH3)PbBr3, an inorganic–organic perovskite important in photovoltaics, Chemical Communications, 50 (2014) 6319-6321.
[57] D.S. Bhachu, D.O. Scanlon, E.J. Saban, H. Bronstein, I.P. Parkin, C.J. Carmalt, R.G. Palgrave, Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour deposition, Journal of Materials Chemistry A, 3 (2015) 9071-9073.
[58] G. Longo, L. Gil-Escrig, M.J. Degen, M. Sessolo, H.J. Bolink, Perovskite solar cells prepared by flash evaporation, Chemical Communications, 51 (2015) 7376-7378.
[59] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers, Energy & Environmental Science, 8 (2015)1550-1554.
[60] M. Petrović, V. Chellappan, S. Ramakrishna, Perovskites: Solar cells & engineering applications – materials and device developments, Solar Energy, 122 (2015) 678-699.
[61] A. Sarkar, N.J. Jeon, J.H. Noh, S.I. Seok, Well-Organized Mesoporous TiO2 Photoelectrodes by Block Copolymer-Induced Sol–Gel Assembly for Inorganic–Organic Hybrid Perovskite Solar Cells, The Journal of Physical Chemistry C, 118 (2014) 16688-16693.
[62] A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition, Energy & Environmental Science, 7 (2014) 2944-2950.
[63] K. Hwang, Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, D. Vak, Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells, Advanced Materials, 27 (2015) 1241-1247.
[64] M. Habibi, F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells, Renewable and Sustainable Energy Reviews, 62 (2016) 1012-1031.