Effect of low irrigation regimes and silica nanoparticles on yield and water productivity index of lettuce (Baby lettuce Vivian)
محورهای موضوعی : Irrigation and Drainageشکور طافی 1 , عبدالرحیم هوشمند 2 , ناصر عالم زاده انصاری 3
1 -
2 -
3 -
کلید واژه: Silica, nanoparticles, Irrigation, lettuce, نانوذره, سیلیکا, کاهو, کمآبیاری, Vivian, ویویان,
چکیده مقاله :
Population growth and increasing environmental problems have greatly increased the demand for irrigation water from parts of the world. Nanotechnology enables the products of sustainable agricultural products to be able to reduce the environment and provide the conditions for the production of new products. The aim of this study was to investigate the performance and utilization of water consumption under low irrigation regimes and silica nanoparticles. The present study was performed on lettuce plant (Vivian lettuce baby dance) in three water levels (75, 85 and 100 required for water plant) and three applied nanoparticle levels including 0, 50 and 100 mg/l as root feeding performed in three replications. This design was completed in the form of shredded strip cards with a basic block design. According to the results, the highest total yield parameter was recorded in I100F100 treatment equal to 87.88g / plant and the lowest amount was recorded in I85F50 treatment with 47g / plant, respectively. Also, the highest biomass yield was recorded in I100F50 treatment which was equal to 61.33 g / plant and the lowest biomass yield was reported in I75F100 treatment which was equal to 26 g / plant. I100F50 treatment with 20.53 kg / m3 had the highest water consumption efficiency. The highest and lowest harvest indices in this study were 74.68 and 52.61%, respectively.
رشد جمعیت و افزایش مشکلات زیست محیطی، تقاضای آب آبیاری در بسیاری از مناطق جهان را افزایش داده است. فناوری نانو تاثیرات زیادی در تولید پایدار محصولات کشاورزی داشته و میتواند خطرات زیست محیطی را کاهش داده و فرصتهایی برای تولید محصولات جدید فراهم کند. این تحقیق با هدف بررسی عملکرد و بهرهوری مصرف آب تحت شرایط رژیمهای کمآبیاری و نانوذره سیلیکا انجام شد. مطالعه حاضر بر روی گیاه کاهو رقم baby lettuce Vivian در سه سطح آبیاری 75، 85 و 100 درصد نیاز آبی گیاه، سه سطح کاربرد نانوذره شامل: 0، 50 و 100 میلیگرم بر لیتر به صورت تغذیه ریشهای در سه تکرار انجام شد. این طرح در قالب کرتهای خرد شده نواری و با طرح پایه بلوکهای کامل تصادفی تحلیل شد. براساس نتایج، بیشترین میزان پارامتر عملکرد کل به ترتیب در تیمار I100F100برابر 88/87 گرم بر بوته و کمترین میزان در تیمار I85F50با 47 گرم بر بوته به ثبت رسید. همچنین بالاترین عملکرد زیستتوده در تیمار I100F50 ثبت شد که برابر 33/61 گرم بر بوته بود و پایینترین عملکرد زیستتوده نیز در تیمار I75F100 گزارش گردید که برابر 26 گرم بر بوته بود. تیمار I100F50 با 53/20 کیوگرم بر مترمکعب بیشترین بهرهوری مصرف آب را داشت. بالاترین و پایینترین شاخص برداشت در این پژوهش، بهترتیب برابر 68/74 و 61/52 درصد بود.
بهبودی، ف.، اله دادی، ا. و محمدیگلتپه، ا. (۱۳۹۲). اثر ورمیکمپوست حاوی نانو ذرات اکسید مس و اکسید روی بر برخی ویژگیهای زراعی لوبیا چیتی. مجله تولید گیاهان زراعی، دوره 3، شماره 6، ص 49-33.
ذرتیپور، ا.، سلطانیمحمدی، ا. و عالمزادهانصاری، ن. (1396). ارزیابی توابع کاهش جذب آب کاهو برگی (Red Salad Bowl) تحت تنش خشکی در شرایط گلخانهای. آب و خاک، دوره 2، شماره 33، ص 331-317.
گلستانیکرمانی، س.، نوریامامزادهای، م. ر.، شایانینسب، م.، شاهنظری، ع. و محمدخانی، ع. (1393). بررسی اثرات تنش خشکی حاصل از کمآبیاری سنتی و متناوب روی برخی از خصوصیات کمی و کیفی سیبزمینی رقم آگریا. علوم مهندسی آبیاری، دوره 3، شماره 37، ص 135-123.
طاهری، ه.، سلطانیمحمدی، ا. و عالمزادهانصاری، ن. (1396). ارزیابی کاربرد پلیمر سوپرجاذب بر عملکرد و کارایی مصرف آب کاهو. پایان نامه کارشناسی ارشد، دانشکده علوم و مهندسی آب، دانشگاه شهید چمران اهواز.
محتشمی، ف.، تدین، م. ر. و روشندل، پ. (1397). ارزیابی تأثیر سطوح کم آبیاری بر عملکرد و اجزای عملکرد ژنوتیپهای گلرنگ. به زراعی کشاورزی، دوره 2، شماره 20، ص 561-547.
هوشمندزاده، ع.، هوشمند، ع.، برومندنسب، س.، عالمزادهانصاری، ن. و سیاهپوش، م. (1392). تاثیر دور آبیاری و کم آبیاری در تعیین کارایی مصرف آب مناسب و کلروفیل برگ کاهو (Lactuca sativa) با استفاده از سیستم آبیاری قطرهای در شرایط اقلیمی اهواز. دومین همایش ملی توسعه پایدار کشاورزی و محیط زیست، 21 شهریور 1392، همدان، ایران.
Acar, B., Paksoy, M., Türkmen, Ö. and Seymen, M. (2008). Irrigation And Nitrogen Level Affect Lettuce Yield In Greenhouse Condition. African Journal Of Biotechnology, 24 (7), pp: 4450-4453.
Amin, M., Ahmad, R., Ali, A., Hussain, I., Mahmood, R., Aslam, M. and Lee, D,J. (2018). Influence of Silicon Fertilization On Maize Performance Under Limited Water Supply. Silicon, 10 (2), pp: 177-189.
Ahmad, M., El-Saeid, M.H., Akram, M.A., Ahmad, H.R., Haroon, H. and Hussain, A. (2016). Silicon Fertilization—a Tool to Boost up Drought Tolerance in Wheat (Triticum Aestivum L.) Crop for Better Yield. J. Plant Nutr, 39 (9), pp: 1283-1291.
Ballester, C., Castel, J., Intrigliolo, D.S. and Castel, J.R. (2013). Response of Navel Lane Late Citrus Trees to Regulated Deficit Irrigation: Yield Components and Fruit Composition. Irrigation Science, 31 (3), pp: 333-341.
Bezerra, A.C.M., Valença, D.D.C., Carvalho, D.F.D., Pinho, C.F.D., Reinert, F., Gomes, D.P., Gabetto, F.P., Azevedo, R.A., Masseroni, D. and Medici, L.O. (2019). Automation of Lettuce Seedlings Irrigation with Sensors Deployed in the Substrate or at the Atmosphere. Scientia Agricola, 72 (2), pp: 179-189.
Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M. and Shiranibidabadi, S. (2018). Effect of Silicon on Growth and Development of Strawberry under Water Deficit Conditions. Horticultural Plant Journal, 4 (6), pp: 232-226.
Davarpanah, S., Tehranifara, A., Davarynejad, G.H., Abadí, J. and Khorasani, R. (2016). Effects of Foliar Applications of Zinc and Boron Nano-Fertilizers on Pomegranate (Punica Granatum Cv. Ardestani) Fruit Yield and Quality. Scientia Horticulturae, 210, pp: 57-64.
Donald, C.M. and Hamblin, J. (1976). The Biological Yield and Harvest Index of Cereals as Agronomic and Plant Breeding Criteria. Advances in Agronomy Journal, 28, pp: 405-361.
Isfahani, F.M., Tahmourespour, A., Hoodaji, M., Ataabadi, M. and Mohammadi, A. (2019). Influence of Exopolysaccharide-Producing Bacteria and Sio2 Nanoparticles on Proline Content and Antioxidant Enzyme Activities of Tomato Seedlings (Solanum Lycopersicum L.) under Salinity Stress. Polish Journal of Environmental Studies, 28 (1), pp: 153-163.
Javadimoghadam, A., Ladan Moghadam, A. and Danaee, E. (2015). Response of Growth And Yield of Cucumber Plants (Cucumis Sativus L.) to Different Foliar Applications of Nano-Iron and Zinc. International Research Journal of Applied and Basic Sciences, 9 (9), pp: 1477-1478.
Kibbey, T.C. and Strevett, K.A. (2019). The Effect of Nanoparticles on Soil and Rhizosphere Bacteria and Plant Growth in Lettuce Seedlings. Chemosphere, 221, pp: 703-707.
Liu, R. and Lal, R. (2015). Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Science of the Total Environment, 514, pp: 131-139.
Mahmoud, M.A., Shala, A.Y. and Rashed, N.M. (2017). The Mutual Effect of Irrigation and Foliar Spray of Silics Nanoparticles on Basil Plant. Journal Plant Production, Mansoura Univ, 8 (12), pp: 1303-1313.
Nagaz, K., Mokh, F.E., Masmoudi, M.M. and Mechlia, N.B. (2013). Soil Salinity, Yield and Water Productivity of Lettuce under Irrigation Regimes with Saline Water in Arid Conditions of Tunisia. International Journal of Agronomy and Plant Production, 4 (5), pp: 892-900.
Pelesco, V.A. and Alagao, F.B. (2014). Evapotranspiration Rate of Lettuce (Lactuca Sativa L., Asteraceae) in a Non-Circulating Hydroponics System. Journal of Society & Technology, 4 (1), pp: 1-6.
Rui, Y., Gui, X., Li, X., Liu, S. and Han, Y. (2014). Uptake, Transport, Distribution and Bio-Effects of Sio2 Nanoparticles in Bt-Transgenic Cotton. Journal of Nanobiotechnology, 12 (1), pp: 2-15.
Rizwan, M., Ali, Sh., Ali, B., Adrees, A., Arshad, M., Hussain, A., Rehman, M.Z.U. and Abdul-Waris, A. (2019). Zinc and Iron Oxide Nanoparticles Improved the Plant Growth and Reduced the Oxidative Stress and Cadmium Concentration in Wheat. Chemosphere, 214, pp: 269-277.
Shams, M., Ekinci, M., Turan, M., Dursun, A., Kul, R. and Yildirim, E. (2019). Growth, Nutrient Uptake and Enzyme Activity Response of Lettuce (Lactucasativa L.) to Excess Copper. Environmental Sustainability, 2 (1), pp: 67-73.
Sharifi, R.J., Sharifirad, M. and Teixeira, D.S.J. (2016). Morphological, Physiological and Biochemical Responses of Crops (Zea Mays L., Phaseolus Vulgaris L.), Medicinal Plants (Hyssopus Officinalis L., Nigella Sativa L.), and Weeds (Amaranthus Retroflexus L., Taraxacum Officinale F.H. Wigg) Exposed To Sio2 Nanoparticles. J. Agr. Sci. Tech, 18, pp: 1027-1040.
Xu, J., Luo, X., Wang, Y. and Feng, Y. (2018). Evaluation of Zinc Oxide Nanoparticles on Lettuce (Lactuca Sativa L.) Growth and soil bacterial community. Environmental Science and Pollution Research, 25 (6), pp: 6026-6035.
Yassen, A., Abdallah, E., Gaballah, M. and Zaghloul, S. (2017). Role of Silicon Dioxide Nano Fertilizer in Mitigating Salt Stress on Growth, Yield and Chemical Composition of Cucumber (Cucumis Sativus L.). International Journal of Agricultural Research, 12 (3), pp: 130-135.