Modelling Mechanical Properties of AISI 439-430Ti Ferritic Stainless Steel Sheet
محورهای موضوعی : Mechanical EngineeringN Brinis 1 , B Regaiguia 2 , O Chahaoui 3 , N Maatougui 4 , M.L Fares 5
1 - Engineering Sciences and Advanced Materials Laboratory (ISMA), Laghrour-Abbes University of Khenchela, Algeria
2 - Engineering Sciences and Advanced Materials Laboratory (ISMA), Laghrour-Abbes University of Khenchela, Algeria
---Metallurgy and Engineering Materials, Badji-Mokhtar University of Annaba, Algeria
3 - Engineering Sciences and Advanced Materials Laboratory (ISMA), Laghrour-Abbes University of Khenchela, Algeria
4 - National School of Mines and Metallurgy-Annaba, Algeria
5 - Metallurgy and Engineering Materials, Badji-Mokhtar University of Annaba, Algeria
کلید واژه: Sheet Metal Forming, Constitutive model, Isotropic hardening function, Orthotropic yield criterion, Anisotropy evolution,
چکیده مقاله :
The comprehension of the anisotropy impactson mechanical properties of the rolled steel sheets was investigated using a non-quadratic anisotropic yield function. In this study, experimental and modelling determination regardingthe behaviourof an industrial rolledsheet for a ferritic stainless low-carbon steel were carried out. The parameters of the associated yield equation, derived from the three orthotropic yield functions proposed by Hill48, Yld96 and Yld2000-2d, were determined. Predictions and the evolution of normalized yield stress and normalized Lankford parameters (plastic strain ratio) obtained by the presented investigative are considered. The forecasts given by the YLD2000-2d criterion are consistent with that of the experience. In order to describe the path of strain behavior, the isotropic hardening function is described using the following four empirical standard formulae based on: Hollomon, Ludwick, Swift and Voce law.More accurately,the anisotropy coefficients of three yield functions are represented as a function of the longitudinal equivalent plastic strain.
[1] Liu W., Guines D., Leotoing L. , Ragneau E., 2015, Identification of sheet metal hardening for large strains with an in-plane biaxial tensile test and a dedicated cross specimen, International Journal of Mechanical Sciences 101–102: 387-398.
[2] Chahaoui O., Fares M. L., Piot D., Montheillet F., 2011, Monoclinic effects and orthotropic estimation for the behaviour of rolled sheet, Journal of Materials Science 46: 1655-1667.
[3] Chahaoui O., Fares M. L., Piot D., and Montheillet F., 2013, Mechanical modeling of macroscopic behavior for anisotropic and heterogeneous metal alloys, Metals and Materials International 19: 1005-1019.
[4] Hill R., 1948, A theory of yielding and plastic flow of anisotropic materials, Proceedings: Mathematical, Physical and Engineering Science, Royal Society London 193: 281-297.
[5] Hosford W.F., 1972, A generalized isotropic Yield criterion, Journal of Applied Mechanics 39: 607-609.
[6] Barlat F., Lian J., 1989, Plastic behavior and stretchability of sheet metals: Part I. A yield function for orthotropic sheets under plane stress conditions, International Journal of Plasticity 5: 51-66.
[7] Barlat F., Lege D. J., Brem J. C., 1991, A six-component yield function for anisotropic materials, International Journal of Plasticity 7: 693-712.
[8] Barlat F., Becker R.C., Hayashida Y., Maeda Y., Yanagawa M., Chung K., Brem J.C., Lege D.J., Matsui K., Murtha S.J., Hattori S., 1997, Yielding description of solution strengthened aluminium alloys, International Journal of Plasticity 13: 185-401.
[9] Barlat F., Maeda Y., Chung K., Yanagawa M., Brem J.C., Hayashida Y., Leged D.J., Matdui K., Murtha S.J., Hattori S., Becker R.C., Makosey S., 1997, Yield function development for aluminum alloy sheets, Journal of the Mechanics and Physics of Solids 45: 1727-1763.
[10] Barlat F., Brem J.C., Yoon J.W., Chung K., Dick R.E., Lege D.J., Pourboghrat F., Choi S.H., Chu E., 2003, Plane stress yield function for aluminum alloy sheets—part 1: Theory, International Journal of Plasticity 19: 1297-1319.
[11] Barlat F., Aretz H., Yoon J. W., Karabin M.E., Brem J.C., Dick R.E., 2005, Linear transfomation-based anisotropic yield functions, International Journal of Plasticity 21: 1009-1039.
[12] Aretz H., Aegerter J., Engler O., 2010, Analysis of earing in deep drawn cups, AIP Conference Proceedings 1252(1): 417-424.
[13] Zhang S., Leotoing L., Guines D., Thuillier S., Zang S.l., 2014, Calibration of anisotropic yield criterion with conventional tests or biaxial test, International Journal of Mechanical Sciences 85: 142-151.
[14] Zang S. L., Thuillier S., Le Port A., Manach J. Y., 2011, Prediction of anisotropy and hardening for metallic sheets in tension, simple shear and biaxial tension, International Journal of Mechanical Sciences 53: 338-347.
[15] Wang H., Wan M., Wu X., Yan Y., 2009, The equivalent plastic strain-dependent Yld2000-2d yield function and the experimental verification, Computational Materials Science 47: 12-22.
[16] Cazacu O., Barlat F., 2001, Generalization of Drucker’s yield criterion to orthotropy, Mathematics and Mechanics of Solids 6: 613-630.
[17] Kawka M., Makinouchi A., 1996, Plastic anisotropy in FEM analysis using degenerated solid element, Journal of Materials Processing Technology 60: 239-242.
[18] Taejoon P., Kwansoo C., 2012, Non-associated flow rule with symmetric stiffness modulus for isotropic-kinematic hardening and its application for earing in circular cup drawing, International Journal of Solids and Structures 49: 3582-3593.
[19] Basak S., Bandyopadhyay K., Panda S. K., Saha P., 2015, Prediction of formability of Bi-axial Pre-strained dual phase steel sheets using stress- based forming limit diagram, Advances in Material Forming and Joining, Springer 2015: 167-192.
[20] Basak S., Bandyopadhyay K., Panda S. K., Saha P., 2014, Use of stress based forming limit diagram to predict formability in two-stage forming of tailor-welded blanks, Materials and Design 67: 558-570.
[21] Watson M., Robert R., Huang Y.H., Lockley A., Cardoso R., Santos R., 2016, Benchmark 1 – failure prediction after cup drawing, reverse redrawing and expansion, Journal of Physics: Conference Series 734: 4022001.