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ABSTRACT

The comprehension of the anisotropy impacts on mechanical
properties of the rolled steel sheets was investigated using a non-
quadratic anisotropic yield function. In this study, experimental and
modelling determination regarding the behaviour of an industrial
rolled sheet for a ferritic stainless low-carbon steel were carried
out. The parameters of the associated yield equation, derived from
the three orthotropic yield functions proposed by Hill48, Y1d96 and
Y1d2000-2d, were determined. Predictions and the evolution of
normalized yield stress and normalized Lankford parameters
(plastic strain ratio) obtained by the presented investigative are
considered. The forecasts given by the YLD2000-2d criterion are
consistent with that of the experience. In order to describe the path
of strain behavior, the isotropic hardening function is described
using the following four empirical standard formulae based on:
Hollomon, Ludwick, Swift and Voce law. More accurately, the
anisotropy coefficients of three yield functions are represented as a
function of the longitudinal equivalent plastic strain.
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1 INTRODUCTION

HE use of thin sheet metal is very widely adopted in modern industry. Nowadays, with increasing demands for

safety, lower weight or reduced fabrication costs, process control and innovative forming processes emerge. The
rolling sheets are characterized by the presence of three mutually orthogonal planes of orthotropic symmetry. It is
notable that the rolling process promotes the existence of induced anisotropy, which greatly influences the
Drawability properties and formability of sheet metals to the desired dimensions and shape. This is especially true
for aluminum alloys and ferritic steels, which exhibit strong crystallographic textures after hot rolling [1-3]. To
describe and identify the anisotropic mechanical behavior of materials, several such functions (quadratic and non-
quadratic) have been proposed. First, Hill [4], which is a simple generalization of the isotropic von Mises plasticity
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to give a quadratic yield criterion mainly associated with the flow rule based on Drucker's postulate. Another
isotropic approach of yield functions introduced by Hosford [5] and extended to a planar anisotropic model by
Barlat et al. [6-11] and the recent yield function development by Aretz [12] to probe the anisotropic properties of
metals. In addition, a quadratic function of Hill48 and as for the constitutive law, a more flexible and adaptable
model is the non-quadratic anisotropic yield functions, Y1d96 [9] and Y1d2000-2d [10], were used to describe the
initial anisotropic yield surface with the isotropic hardening law for the yield surface evolution. These are having 7
and 8 material parameters which can be identified respectively by the yield stresses and strain ratios in three uniaxial
cases, RD (0°), DD (45°) and TD (90°) and one equibiaxial tension case with a varying cross-section. Yield
functions can involve a several anisotropy coefficients for a material. The identification of these parameters requires
usually high number mechanical tests in different directions following loading paths. To ensure a certain precision
of parameters, the number of experimental data should not be lower than the number of material parameters
considered in the identification operation [13]. The description of initial anisotropy of the yield function coupled
with optimal hardening evolution, can lead to a good representation of the mechanical behavior [14]. In order to
describe the path of strain behavior, the isotropic hardening function is described using the following various
empirical standard formulae based on: Hollomon, Ludwick, Swift and Voce model. For more accuracy, Wang et al.
[15] proposed an equivalent strain-dependent identification method by taking into account the evolution of
anisotropic parameters at different plastic strain levels, which these coefficients of Hill48, Y1d96 and Y1d2000-2d
yield functions are represented as a function of the longitudinal equivalent plastic strain ( £ ).

The remainder of this investigative study is structured as follows. Section 1, a basic mathematical description of
the anisotropic behavior of a homogeneous rolled sheet, expressed in accordance with the Hill's formalism and
improving Barlat’s Y1d96 and Y1d2000-2d yield function of generalized materials, is presented. In Section 2
describes experiments that were carried out to determine the mechanical characteristics of the material according to
the needs of the analysis, since mechanical experiments are used to provide comparison with theoretical results.
Then, in Section 3, describes the isotropic hardening for a metal sheet with four classical laws using curve fitting for
Stress-Strain experimental data. The yield surface expands and contracts homotheticly in stress space during strain-
hardening and strain-softening, respectively. For convenience, the three groups of independent anisotropy
coefficients corresponding to the three yield functions, are represented as a function of the longitudinal equivalent
plastic strain ( £ ) is employed in Section 4.

2 PHENOMENOLOGICAL MODELS

Considering (RD: the rolling direction, TD: the transverse direction and ND: the normal direction) the three
orthotropic directions) wherein the only nonzero component of the stress tensor is o, = o in the sample frame (x,

v, z) (Fig.1). In this section, three yield criteria were used to predict the anisotropic plastic behaviour of the AISI
439-430Ti - Ferritic stainless sheet steels (FSS).

ND (X3) =2z

TD (X>) Fig.1
- Schematic illustration of the tensile test used in the sheet
RD (X)) g : plane (Symmetric Rolling).

2.1 Hill’s 48 yield criteria
The first plastic yield criterion describing the anisotropic behavior of rolled sheets, was the orthotropic and quadratic
criterion proposed by Hill [4], insensitive to Bauschinger effect and to Spherical stress characterized by six

coefficients independent parameters. In the system of orthotropic coordinates, the Hill’s 48 yield criteria are
formulated as follows:

f(ag/):Y :F(Uzz _033)2 +G(O-33 _611)2 +H(011 _0-22)2 +2LO_223+2M0123+2N122 :203 (l)
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427 Modelling Mechanical Properties of AISI 439-430Ti....

F, G, H, L, M and N anisotropy coefficients can be derived from texture components (see also [2]) or usually
determined from mechanical tests (i.e.; usual uniaxial tensile as well as simple shearing), as hereafter:

whenever, in plane stress state (i.e.; o,; =0,; =0,, =0, and 0,,, 0,,, 0, #0), Eq. (1) can be reduced to
Fo,, +Go +H (o, —0,) +2N o, =20, ()

where L =M =N =3G =3F =3H :% , Hill48 yield function reduces to Mises yield function.

If Gé, aj and 63 are the yield stresses in uniaxial tension along the axes RD, TD, and ND, respectively:
G+H =20 /o) F+H=2(c,/0?) F+G=2(c,/c") 3)
If o 023 , O 33 and O (1)2 are the simple shear stresses along the anisotropy axes:

L=(ofoP) M =(cyfob) N =(ofol)

The most common method to obtain F, G, H and N material parameters of the Hill'48 model, can be related to
experimental yield stresses as follows.

For the stress-based method, the Input data is o,,0,5,04,,0, [16].

2 2 2 2
F:ﬂ 0_0_} G =%{J—g+a—g—1}
Oy O Oy O, @)
1 o, o} 1| 407 o}
= v-i-
Og9 G Oy Oy

Input data is 7y,7,s,7, [17].

B 7, 1

ryo(1+7,) A+7) )
__ N N:(l+2r45)(r0+l”90)

d+7r) 21, (1+7)

Input data is 0,0,5,04,%, [18].

— 20, _ 20,7y
Too(1+759) Too (14 7) 6
_ 20,7y, :40-(? 1 7y (1 =1 ©)
Too(1+7y) Tis Too (1+759)

Note that all these variants imply o,,, =0, . Where 0,0ys,0y are unidirectional yield stresses of 0°, 45° and
90° according to the rolling direction (RD). 0, is the biaxial yield stress determined by a biaxial tensile test

experiment. Noting that, all these variants imply 0,, =0 . Since formability of any sheet is characterized by o(0)
mechanical parameter that is primarily related to the size and shape of grains, drawability is usually related to the
r(0) -value, (Lankford’s Parameter) which is defined as the ratio of the true strains in the width and in the thickness
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directions, respectively. Based on the Hill48 quadratic criterion as well as on the associated flow rule according to
normality principle, relationships determining mechanical and anisotropic parameters are:

o,
c(0)= .
(F sin* @+G cos* @+ H cos® 20+ 2N sin® 6 cos® 9)1/ : (72)
2 2 i 2
+(0) = H cos” 20— (F +G —2N )cos” fsin” 6 (7b)

Fsin® @+G cos” 6
The anisotropic coefficients F, G, H, and N of Hill-48 were obtained from Eqgs. (3) and (4) to computed r-values.

H 2N —(F +G) H

=" Ts= > T =0 ®)

2F +G) F

2.2 Yld96 yield criteria

The yield criterion Y1d96 proposed by Barlat et al. [9] one of the most accurate anisotropic yield functions for rolled
sheets presents the following form:

fo)=w=a,|S, -S| +a,|S; -S| + ]S, =S, | =207 )

The non-quadratic exponent ‘‘a’’ is a material's constant strongly associated with the crystal structure. For an
FCC material, the values of the constant ¢=8 are mainly recommended and a=6 concerning BCC materials. In Eq.
(7), the eigenvalues of the isotropic plasticity equivalent stress space is given by:

S=Loc
where L is the fourth order symmetric and deviatoric tensor that represents a linear transformation of the Cauchy

stresses. For orthotropic materials, in a 6 by 6 notation, L reduces to this following form with Cj are material
constants:

R < NN
3 3 3
—C, c, +cy < 0 0 o0
3 3 3

L,=| — L4 At 4 o9 o (10)

3 3 3
0 0 0 ¢, 0 0
0 0 0 0 ¢, O

o 0 0 0 0 ¢

For plane stress condition in which (0,, =0,, =0, = 0) and the z-direction is the third principal direction,

(e, +c, —c, —c, 0
s 3 3 3 o
* — c, +c — y
S 3 1 3 < 0 o,

Si=lg |=| 3 3 i o (11)
e < S

— 0

o 3 3 3 Ty
| o 0 o c|

and
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429 Modelling Mechanical Properties of AISI 439-430Ti....

_C3(O'x —O'y)—Cz(O'z _O-x) 0 ]
S 0 3 o
x Xy Clo-y _C3 (o-x - O-V )
S, =|S, S, 0|= €O 3 ‘ )
0 0 s, 0 0 =S, =S,

The principal deviatoric stresses S ; in plane sheet can be formulated as:

S+, (5.5,
2

2
J +Sxy2 , S, =—(5,+S,) (13)

The coefficients &;_;,; = &,;,0,,0; are computed using the transformation:
2 2 2
a, =a, Pl[ ta, ‘P2i ta, 'P3i

P is the transformation matrix between the principal direction of s and the principal axes of anisotropy

cosf —sinf 0
P =|sin@ cosd O
0 0 1

The relations between @;_,3 =&, ®,,Q; and & are given by

a, =a,.cos’ @+a, .sin’ 6
a, =a,.sin’0+a,.cos’ 0 (14)
a, =a.,.cos’ 20 +a,, sin’ 20

In the above equations, €,C,,C5,Cq,Q, &, ,Q,(, &, are eight coefficients that describe the anisotropy of the

material. The value of @, is usually set to 1. Seven parameters obtained by a numerical identification based on the

experimental data 0,0,5,04,7;,745,7y and 0, . A nonlinear system of seven equations of the seven unknowns is
recommended to be solved using the Newton-Raphson method. It should be noted that the function of Y1d96 reduces
to the simple isotropic case when all the seven anisotropy parametersC,,C,,C5,C4,0;,&,,0; in the L tensor are equal

to 1 and finally by setting the exponent @ = 2 and all the anisotropic parameters equal to unit, the standard von
Mises isotropic criteria is restored.

2.2.1 Calculation ry-value from Yld96

The mechanical parameter 7, :éw / &, (which is defined as the ratio of the true strains in the width and in the
longitudinal directions, respectively) is analogous to the r-value, and it characterizes the slope of the yield stress of
the balanced biaxial loading stress state 0, (0, = o, ). If the r, coefficient is equal to 1, the isotropic case will be

recovered, else, it is anisotropic behaviour. This coefficient can be evaluated using three different approaches: the
first approach concerns experimental way by performing compression tests. The second approach regards the
computation of this coefficient from a polycrystal model based on the micro-texture of the material. The third
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approach to theoretically use Y1d96 yield function. In this work, since it was not possible to perform compression
tests. The coefficient r, can be computed by

r, =[—a, (c; +2c,) 2c, +c,) |2c] +c,

=
¢ ta, (c;—¢) (c +2€2)|C1 +2c,

i (26‘3 +C]) (C] _Cz)

e —c,| 1/ [—a, (¢, —¢;) e, +¢,) [2¢, +¢,|“P—a, (2, +¢3) (¢, +2¢,)|e, + 2, |7 (15)
+(c, +2¢5) (¢, —¢5) |Cl —C, aiz]
The generalized form of anisotropy equation is described in following equation:
_ Y sin? 0— (0¥ ) sin 20+ (2% ) cos? 0
©) £, oo, do,, do,, 16
FO) =22 — _
v, v (e
oo oo

xx »y

Here, @ is the orientation measured anticlockwise form reference x-axis. The rotation rules of stress components
from the specimen reference to the sheet axes in uniaxial test are given as:

o

o(0) = 2 Ta

I 1 1T (17)
a, l—g;( +a, —l—g;g +a, 5}(
with
1 ) .92 4 4 2 2

l= 5[(:2 cos” 0 + ¢, sin 0] ;(:\/,Blcos 6+ p,sin” 6+ f, sin” Gcos” O

B =c; +4c,cy+4c a, = a, .cos’ O+a, .sin’ 0

By =c +dccs +4e; a, =a, .sin’ O+a,.cos’ O and a,=1

B, =36¢; —4c; —4cc, —dec, —2cc, a, =a,,.cos’ 20 +a., sin’ 20

where f (o,) = (%j ”

2.3 Yld2000-2d yield criteria

Barlat et al [10] proposed a non-quadratic anisotropic plastic potential model for metals, which is also very
successful for steel. Eq. (18) expresses the Y1d2000-2d yield criteria in terms of the principal stress deviators tensor:

flo)=0=|S/-S;|" +[25]+S/1" +[28/+S]

" =20} (18)

Idem in the case of Y1d96, the non-quadratic exponent ‘‘k’’ is a material's constant strongly associated with the
crystal structure. For an FCC material, the values of the constant k=8 are mainly recommended and 4=6 for BCC
materials. For the anisotropic case, the linear transformations reduce to:

St ¢/, C 0 Sn A ch cl 0 Sn
S, |=1C; Cy 0 Sy | |Sh|=|Ch Cy 0 Sy (19)
S, 0 0 Cillsn, Sy, 0 0 Cgllsn,

Or, the transformation can also be applied to the Cauchy stress tensor o as:
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(20)

S'=CS =CTo=L'c
S"=C'S =C'"To=L"oc

In this case the first and the second modified principal deviatoric stresses S 1',2 , S 1”2 in plane sheet can be shown

as:

! 1 ’ ! 1 ’ ’ ’
Sl,z :E(Sll +522)i5\/(S11 _Szz)z +4S122

@1

r 1 r r 1 rn rn n
Sis :E(Sn +Szz)iE\/(S11 _S22)2 +45122

In the previous equations, C” and C’’ are linear transformation matrices. Where the transformation matrix, 7, is

2 -1 -1 0 00
-1 2 -1 0 0 O
2/3 -1/3 0
T_l -1 -1 2 0 0 QfPne s 23 o )
3]0 0 0 3 0 0| (22)
0 0 1
0 0 0 0 3 0
L0 0 0 0 0 3]
The tensors L’ and L’ representing linear transformations of the stress tensor are.
_Lll L12 L]3 O O O ]
Lo fo By 000 L. L 0
L. = I 0 0 0 | Pplane L“ le 0 N
710 0 o L, 0 0 - 21 2 (23)
O O L66
0 0 0 0 Lz 0
L 0 0 0 0 0 L66_

Therefor L,, +L,, +L;, =0 form =1, 2, 3. For convenience in the calculation of the anisotropy parameters,

the coefficients of L’ and L’ can be expressed as follows:

-y ,
|3 00 L 2 2 8 -2 0|
21'1 1oy L | 1 -4 4 4 0a,
e “l L=l |==|4 4 -4 1 0| e
H R I Y ol Yl s 2 20 @4
, Py - - a
L, 3 o, 2”2 6
L., 0 2 0 | L | |0 0 0 0 9| a
3
0 0 1)
Finally, the anisotropic parameters can be expressed in the following manner:
o, =C|, 20 =2C|+C;
a,=C, a, =2C,+C);
2 22” . 6 ,12 22 (25)
a; =2C; +Cyj a; =Cg
2a, =2C,; +C] ay =Cg
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The sheet rolled is strongly anisotropic, to describe this property, it is necessary to identify eight independent

coefficients of anisotropy such as: @....%; and ¢4, where they reduce to unite in the simple isotropic case. The
eight unknown anisotropy coefficients of the Y1d2000-2d yield function were obtained using the eight experimental

material data (Oy,0,5,00,0p 7, 45,7957, ). A nonlinear system of seven equations of the seven unknowns is
recommended to be solved using the Newton-Raphson method to determine the @&; parameters.

The reference yield stress is 0,,, = 0, . The rotation rules of stress components from the specimen reference to
the sheet axes in uniaxial test are given as:

o, =o(6)cos’ 6
c,, =c(f)cos’ 6 (26)
o, =o(f)sinfcosf

o(0) : is the yield stress of specimen under uniaxial tensile test.

1

T 2
(0 = 2% o, .
k 7 27)
X, + Xz—E +X2+£
2 2
with
1
a, 20:5—50:3, a,=0,-q,, a,=0,—0;, a,=2a,-—0a,
4 | 4 1
a5—3a5 —§a3 , Qg gaz N a7=§a4 3(16 , g §a3
1 . |
A =§(200529—sm2 6), B :E(ZSmZH—cos2 0) , C =cos’ O.sin* O

X, =a/A* +a&;B* -2a,0,AB +4a:C | X, =(a,+a,)4 +(a, +a,)B

2 2
2a,B 2a,B \( 2a,4 2a.4
Y :(a5A+ % j —ZKaSA+ % j( % +a7BH+( % +a7Bj +4a;C
3 3 3 3

where

& 1/K D+ D" /K
f(a,-j)=(5j { : j (28)

A directional r-value r(), associated with the orientation angle @ in plane sheet can be calculated from

( o ).sin2¢9—(ﬂ).sin2¢9+( of ).cos” @
oo, oo

& oo
6 — »y - _ XX Xy » 2
)= % (29)
ao—xx aO-yy
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3 UNIAXIAL TENSILE TEST

Uniaxial tensile tests were conducted to determine two essential parameters, the yield stress o(6)and the r(8) of

the overall sheet. The sheet samples prepared along three orientations 0°=RD, 45°=DD and 90°=TD from the rolling
direction (RD) were investigated. The anisotropic coefficients of this rolled sheet were also calculated for the 18%
pre-strain level and the results were tabulated in Table 1.

Table 1

Material mechanical property for FS steel in three directions.
Direction v o, (0.2% offset) (MPa) r
0° 278 0.7
45° 0.3 283 1.41
90° 271 0.82

Fig. 2 shows the uniaxial hardening curves for specimens extracted at three different orientations (RD, DD and
TD). The yield curves in TD and RD are even crossing each other. The experimental data were taken from Chahaoui
et al. [3].

600 -
500
400 -
300+

200

True stress

100
o X Fig.2

0.00 0.08 012 0.18 Hardening curves for FS steel.
True strain

The normalized flow stresses (yield stress) and r-value for different directions are presented in Table 2. Yield
stresses for each direction were then normalized by the mono-directional yield stress along the rolling direction.

Table 2
The normalized tensile yield stress by the rolling direction uniaxial yield stress.
0,/0 0,./0 0,/ 0. 0, /0
Yield stress 0/ ! 45/ u 90/ u b/ u
1 1.021 0.97 1
e Tty Tin/Ty Ty
r-value
1 2.01 1.17 0.8612

Note that in this work, the equibiaxial yield stress o, was assumed O, =1 and the ry-value was computed from
Y1d96.

4 DETERMINATION OF ANISOTROPY COEFFICIENTS FOR DIFFERENT YIELD FUNCTIONS

The resulting anisotropic coefficients of Hill’s 1948 (F, G, H and N) and all independent coefficients of Y1d96 and
Y1d2d-2000 for as-received material. The Values are summarized in Table 3.

Fig. 3 reflects the variations of the mechanical parameters for three yield criteria (Hill 1948, Y1d96 and Y1d2000-
2d). All of them predict the normalized anisotropic coefficient o(8)and r(8) evolved with # in Fig. 3(a-b). The
flow stresses o(#) and the Lankford r-values r(6) deducted from Y1d2000-2d also agree with experimental data

very well. Furthermore, the corresponding yield Loci of the materials that are obtained for the studied yield criteria
were plotted in Fig. 3(c).
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Table 3
Calculated anisotropy parameters for the FS steel identified from conventional tests.
F G H N
Hill48 0.48 0.53 0.51 1.4
c ¢ c ¢ o a, a /
FS stecl YLD96 a=6 ‘ ’ i ’ * : !
1.023 0.976 1.023 0.945 1.227 1.612 2.490 /
a a a a a [ a Q,
YLD2000-2d k=6 ! ! ’ i ’ ‘ ! i
0.915 1.041 0.914 1.012 1.026 1.001 1.012 0.879
1,154 Hill4s
Yid2000-2d 2.0
110 Y1d9o6
- Exp 1,5
1,054 P
= =
S — =
= == Hill
© 0,95 | = o054 ::g%agoo.zd
L] Exp
0,920 T T T T T T
o 15 30 45 60 75 90 0% 15 30 a5 &0 75 %0
(@ (b)
? Fig.3

had 01
1 §
e — <,

o

—1 —0.5 3 0.5 1
Hilla s Yidos Y1d2000-2d = Exp

©

Distribution of the uniaxial mechanical parameters for FS
steel. (a) Normalized yield stress.(b) Plastic strain ratio
and in. (c) Comparison of three yield contours predicted
with  Hill48,Y1d96, Y1d-2000-2d and Experiment
behaviour.

5 CURVE FITTING FOR STRESS- STRAIN EXPERIMENTAL DATA WITH ISOTROPIC

HARDENING MODEL

The flow stress equation is related with stress and strain data in order to describe the path of strain behavior of FS
steel. The isotropic hardening function is described using the following various empirical standard formulae based
on: Hollomon, Ludwick, Swift and Voce model in the rolling direction.

e The Hollomon hardening law is: o, =K, &"

e  The Ludwick hardening law is:

_ nl
o, =0,+K, ¢

o  The Swift hardening law is: &, =K, (g, +¢,)"

and

(30)

& =0,/E

e The Voce hardening law is: o, = oy, —(0,, —0,)exp(-nv &,)

In order to quantitatively evaluate the theoretical yield stress-strain relations, we calculated the average error

estimation of each equation as:

n i e
5 _ 1 Z o Theoritical o Experimental

1

n i=1 (o2

Experimental

(€2))
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. . . i i .
where 7 is the number of the experimental points; O'ppiq a0d O gpinena are the experimental stress and the

corresponding theoretical stress, respectively. K,, K, K, o

sat ’

(0,, &, ) in the uniaxial tensile test along the rolling direction (0°). The results are presented in Table 4.

ny, n, ng and n, were obtained by fitting data

Table 4
Fitting data of the four hardening laws.
Hollomon Ludwick Swift Voce
K, (MPa) 600 Kl (MPa) 806 Ks (MPa) 685.6 o,, (MPa) 541
nh 0.12 nl 0.65 ns 0.166 ny 12.85

In order to describe the plastic property of the material, an isotropic hardening model was fitted to the
experimental uniaxial tensile data. It was observed from the previous literatures [19-21]. In Fig. 4, the
experimentally measured stress-strain curve and the fit by the four laws, which were utilized for FS steel. It is shown
that a good fit is achieved in first by the Voce and it was a better choice of stress-strain evolution of pre-strained
material. Therefore, the Voce law is adopted in this work. The Voce hardening model is used to compute the yield
stress in terms of the total equivalent plastic strain £ =100%a.

500 4

e

Exp
Hollomon
Ludwick
—— Swift Fig.4
Voce

IS

o

=]
:

True stress [MPa]
3

Fitting of experimental hardening curve with different
hardening models.

0,00 0,06 0,12 0,18
Effective true strain[-]

6 EVOLUTION OF YIELD STRESSES NORMALIZED WITH YIELD STRESS FOR THE ROLLING
DIRECTION

Directional uniaxial tensile test O, / 60,0'45/ 0y >0y / 0, and the assuming of equibiaxial yield stress o, /00 and

7, were conducted in order to derive the independent anisotropic coefficients of Hill-48, Y1d96 and Y1d2000-2d

yield functions respectively in sheet plane at five & levels. The hardening model of voce (Fig.5) was then used as
input data to calculate these parameters. Uniaxial stresses were normalized by the uniaxial stresses in the RD for
different £ levels, are listed in Table 5. Moreover, the values of anisotropic parameters of Hill-48 and corresponding
r-values are tabulated in Table 6. The values of anisotropic parameters of Y1d96 and Y1d2000-2d model are given in
Tables 7 and 9 respectively, knowing that at each plastic strain-level the parameters were calculated using the
Newton-Raphson iteration method.

600+

» 500 -
w
o Voce
» —0°
® 400 —_45°
e 90°
300 Fig.5
. . . . . The hardening curves from different testing in terms of
0.0 02 0,4 0,6 08 1.0 100% of plastic strain.

Total True strain
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Table §

The normalized uniaxial stresses in terms of the plastic work per unit volume w”.
() 0y Oys ) 0,/0; 0,5/0, Oy/0; 0,/o,
0.001 293 280 275 1 0.955 0.938 0.969
0.16 509 527 506 1 1.035 0.994 1.014
0.30 536 552 535 1 1.030 0.998 1.014
0.40 539 555 539 1 1.030 1.000 1.015
0.56 541 556 540 1 1.027 0.998 1.012

Note that the equibiaxial yield stress o, was assumed in this work. Thus, o, = (o, +0,,)/2 at each strain-level

g.
Table 6
The values of anisotropic parameters of Hill-48 and corresponding r-values.
£0) F G " N o Tys T Ty
0.001 0.464 0.60 0.535 1.66 0.89 1.060 1.154 0.7670
0.16 0.480 0.49 0.52 1.38 1.055 0.920 1.082 0.9734
0.30 0.484 0.488 0.515 1.398 1.056 0.938 1.064 0.9920
0.40 0.485 0.485 0.514 1.40 1.060 0.940 1.060 1.0000
0.56 0.486 0.490 0.510 1.410 1.040 0.940 0.056 0.9842
Note that the equibiaxial r,-value was calculated from Y1d96 (Barlat et al., [10]).

Table 7
The values of anisotropic parameters of Y1d96 function (exponent a = 6).

£0) ¢ ) ¢ Cs a, a, a:,
0.001 1.0970 0.9646 1.0347 1.1167 0.7311 1.3396 0.8013
0.16 0.9923 0.9801 1.0197 0.9148 0.9930 1.0534 1.2772
0.30 0.9882 0.9842 0.9273 0.9882 1.0108 1.0298 1.2279
0.40 0.9852 0.9852 1.0147 0.9277 1.0203 1.0203 1.2233
0.56 0.9902 0.9861 1.0138 0.9341 1.0080 1.0352 1.2057
Table 8
The values of anisotropic parameters of Y1d2000-2d function (exponent k= 6).

£(-) Q a, a, a, ay 0 a, 0
0.001 0.8760 1.1964 0.9348 1.0134 1.0423 1.1216 1.0495 1.0579
0.16 0.9912 1.0214 0.9644 0.9915 0.9943 0.9810 0.9622 0.9541
0.30 0.9990 1.0087 0.9717 0.9917 0.9925 0.9770 0.9677 0.9617
0.40 1.0029 1.0029 0.9734 0.9911 0.9911 0.9734 0.9678 0.9627
0.56 0.9971 1.0092 0.9736 0.9925 0.9945 0.9812 0.9706 0.9654

The anisotropy coefficients listed in Tables 6, 7 and 8 were used to plot the diagrams in Figs. 6. Subsequently,
the evolution of normalized mechanical parameters of flow stresses o (6) (yield stresses normalized with yield stress
for the rolling direction) and Lankford coefficient »(8) for seven orientations (0°, 15°, 30°, 45°, 60°, 75° and 90°) is
plotted at three levels of effective plastic strain £ at the start of plastic deformation £=0.001). Thus, it is

graphically demonstrated that the evolution of these parameters based on both yield functions (Hill48, Y1d96 and
Y1d2000-2d) change with level of £ at different orientations and the mechanical response is appreciably

significant.

The according parameters are given in Tables 6, 7 and 8; the values of anisotropic parameters of Hill-48, Y1d96
and Y1d2000-2d of FS steel were calculated using stress ratio and -values in each equivalent plastic strain as shown
in Fig.7(a, b and c). The values the anisotropy coefficients are varied in relation to the increase of the equivalent
plastic strain until 30% of equivalent plastic strain for Hill48 and Y1d2000-2d functions but about 40% forY1d96.
Beyond these values, no significant variation in coefficient evolutions.
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Normalized flow stresses o(€) and Lankford » (@) for seven orientations at three levels of effective plastic strain based on
both yield functions (Hill48, Y1d96 and Y1d2000-2d).
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For convenience, the three groups of independent anisotropy coefficients corresponding to the three yield
functions, are represented as a function of the longitudinal equivalent plastic strain ( £ ).The independent material
coefficients calculated at each level of equivalent plastic strains have been optimized using fourth-order polynomial
equations functions.

d, =b,+b,g*+b, &’ ~b, £ +b, € (32)

These anisotropy coefficients functions are given in Tables 9, 10, and 11 for FS steel witch the varying
parameters as they were obtained from the fitting procedure.

Table 9
The anisotropy coefficients of Hill48 yield functions as a function of the equivalent plastic strain ( £ ).
Hill48 coefficients Fourth-order fit
F —0.4364 £* +0.7771 £> —0.5242 % +0.1658 £ + 0.464
G 11.654g* —15.7972" +7.6038 £ —1.5475 £ + 0.6
H —0.3506 £* —0.0857&° +0.21142% —0.1283 £ +0.535
N 32.724 % —44.928 £° +21.5758> —4.1859 £ +1.66
Table 10
The anisotropy coefficients of Y1d96 yield functions as a function of the equivalent plastic strain ( £ ).
Y1d96 coefficients Fourth -order fit
¢ 10.382* —14.143 £° +6.8914 £ —1.4374 £ +1.097
¢ —0.3632" +0.6749 £° —0.4763 £ +0.1573 £ + 0.9646
C, —80.5985* +90.012 £° —30.107 &> +2.7492 & +1.0347
Cq 79.6672* —95.161 £° +36.695 £> —5.0232 £ +1.1167
a, —242228* +33.077 €° —16.285 £% +3.4949 £ +0.7311
a, 24.6032* —33.894 £° +16.967 £> —3.7365 £ +1.3396
o, —61.992* +84.221 8% —39.689 £2 +7.4224 £ +0.8013
Table 11
The anisotropy coefficients of Y1d2000-2d yield functions as a function of the equivalent plastic strain ( £ ).
Y1d2000 coefficients Fourth -order fit
a, —10.555* +14.439 £° —7.1295 £% +1.5343% +0.876
@, 15.3818* —21.246 ° +10.6 £° — 2.3089 £ +1.1964
a, —0.94012* +1.54952° —1.0018 £ +0.3095 ¢ +0.9348
a, 2.5877¢* -3.4553 % +1.62718% —0.3194 £ +1.0134
a; 4.92075* —6.6366 £° +3.20498% —0.663 £ +1.0423
a 14.3838" —19.532 &° +9.46545° —1.9521 £ +1.1216
o, 10.4128% —14.227 £° +6.79085* —1.31061 £ +1.0495
a. 12.2272% -16.836 £° +8.0874&° —1.5618 £ +1.0579

7 CONCLUSIONS

In the present paper, constitutive formulations based on the three orthotropic yield functions of Hill48, Y1d96 and
Y1d2000-2d are presented and analysed to predict the anisotropic plastic behaviour of the AISI 439-430Ti - Ferritic
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stainless sheet steels (FSS). At several points of experience, Y1d2000 criterion gives better agreement of flow
stresses predictions and r-value anisotropies with experimental data in comparison with Hill’48 and Y1d96
functions. For the isotropic hardening, it is shown that, the Voce hardening law a very good compromise with the
experimental results for sheet and it is adopted to govern the evolution of the true stress as a function of the
equivalent plastic strain. This fact makes the possibility to predict the mechanical behavior of the material beyond
the homogeneous zone of deformation. The three groups of independent anisotropy coefficients corresponding to the
three yield functions (Hill48; Y1d96 and Y1d2000-2d yield functions) are represented as a function of the equivalent
plastic strain ( £ ) at each level in order to describe the material behavior more accurately.
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