اثر حفاظتی عصاره هیدرو الکلی اسفناج بر آزمون های عملکردی و تغییرات بافتی کبد در موش های صحرایی نر بالغ تحت تیمار با فلوکستین
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستیمریم هلالی 1 , مهرداد شریعتی 2
1 - علوم جانوری، گروه بیولوژی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
2 - گروه بیولوژی، دانشگاه آزاد اسلامی، واحد کازرون، کازرون، ایران.
کلید واژه: موش صحرایی, فلوکستین, اسفناج, آزمون های عملکردی کبد(LFT),
چکیده مقاله :
زمینه و هدف:فلوکستین یک مهارکننده انتخابیبازجذب سرتونین(SSRI)است که به عنوان اولین خط دارویی برای درمان افسردگی و بسیاری از ناهنجاریهای عصبی-روانی دیگر استفاده میشود. این دارو باعث اختلال در میزان آنزیم های کبد شده و هم چنین باعث آسیب بافتی می گردد. دراین مطالعه، اثر حفاظتی عصاره آبی- الکلی اسفناج بر تغییرات تست های عملکرد و بافت شناسی کبد به دنبال مصرف فلوکستین در موش صحرایی نر بالغ مورد بررسی قرار گرفت. روش کار:در این مطالعه تجربی، 50 سر موش صحرایی نر بالغ از نژاد ویستار به 5 گروه 10 تایی به صورت زیر تقسیم شدند: گروه کنترل بدون هیچ تیمار دارویی، گروه شاهد مثبت تیمار شده با mg/kg bw 120فلوکستین، گروه شاهد منفی تیمار شده با mg/kg200 عصاره آبی- الکلی اسفناج و گروه تجربی1 و گروه تجربی 2 که به ترتیبmg/kg100 و mg/kg 200 عصاره آبی- الکلی اسفناج و سپس mg/kg bw 120فلوکستین را به مدت 21 روز دریافت کردند. در پایان دوره آزمایش، از نمونه های خونی آماده شده برای اندازه گیری غلظت سرمی آنزیم های ALT، AST، ALP، GGT و هم چنین توتال بیلی روبین، آلبومین و پروتئین تام استفاده شد. در پایان دوره آزمایش در قسمت شکمی حیوان، کبد را به طور کامل جدا کرده، پس از توزین کبد، آن ها را درون ظرف درب دار حاوی فرمالین10% قرار داده تا زمانی که نمونه ها تثبیت و آماده مقطع گیری شوند. یافته ها: در مقایسه با گروه های کنترل و شاهد منفی، گروه دریافت کننده فلوکستین به تنهایی باعث افزایش در غلظت سرمی ALT، AST، ALP، GGT، توتال بیلی روبین و کاهش غلظت سرمی آلبومین و پروتئین تام شد. مصرف عصاره اسفناج به تنهایی تغییر قابل ملاحظه ای بر غلظت سرمی ALT،AST، ALP، GGT ،توتال بیلی روبین، آلبومین و پروتئین تام در مقایسه با گروه کنترل نداشت در حالی که گروه های دریافت کننده عصاره، مسمومیت کبدی ناشی از فلوکستین را کاهش داد. در مقایسه با گروه های کنترل و شاهد منفی، گروه دریافت کننده فلوکستین به تنهایی باعث آسیب سلولی در بافت کبد شد. مصرف عصاره اسفناج به تنهایی تغییر قابل ملاحظه ای بر روی بافت کبد در مقایسه با گروه کنترل نداشت در حالی که گروه های دریافت کننده عصاره، مسمومیت کبدی ناشی از فلوکستین را کاهش داد. نتیجه گیری: نتایج نشان داد عصاره اسفناج اثر حفاظتی در برابر عوارض جانبی فلوکستین بر روی کبد دارد و باعث بهبود عملکرد کبد و رفع آسیب های بافتی کبد می شود.
1.Atef, M. (2012). Attenuating effect of Ginkgo biloba Leaves extract on liver fibrosis induced by thioacetamide in mice. J Biomed Biotechnol, 2012;761450.
2.Bogin, J.F. (2009). Animal anatomy and physiology, 2 ed. reston publishing CO,Inc, Reston, Virginia, pp;154-156
3.Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M. (2008). Total and individual caretinoids and phenolic acids content in fresh refrigerated and processed spinach(Spinacia oleracea L.). Food Chem, 108; 649-56.
4.Chenxi, Xu., Chen, J., Honghe, S., Xiaofeng, C., Xiaoli, W., Chenhui, G. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 8(10);1038.
5.Das, S., Guha, D. (2008). CNS depressive role of aqueous extract of Spinacia oleracea L. leaves in adult male albino rat. Nature, 46;185-90.
6.Dehkharghanian, M., Adenier, H., Vijayalakshmi, MA. (2010). Study of flavonoids in aqueous spinach extract using positive electrospray ionization tendem quadrupole mass spectrometry. Food Chem, 121; 863-70.
7.Domitrović, R., Jakovac, H., Tomac, J., Sain, I. (2009). Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin. Toxicology and Applied Pharmacology, 241; 311-321.
8.Domitrović, R., Jakovac, H., Grebić, D., Milin, C., Radosević-Stasić, B. (2008). Dose- and time-dependent effects of luteolin on liver metallothioneins and metals in carbon tetrachloride-induced hepatotoxicity in mice. Biol Trace Elem Res, 126(1-3);176-85.
9.Eftekhari, A., Ahmadian, E., Panahi-Azar, V., Hosseini, H., Tabibiazar, M., Maleki Dizaj, S. (2017). Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: in vitro/in vivo studies. Artif Cells Nanomed Biotechnol, 1-10.
10.Geng, Y., Sun, Q., Li, W., Lu, ZM., Xu, HY., Shi, JS. (2017). The common dietary flavonoid myricetin attenuates liver fibrosis in carbon tetrachloride treated mice. Mol Nutr Food Res, 61(4); doi: 10.1002/mnfr.201600392.
11.Guo, H., Lin, W., Zhang, X., Zhang, X., Hu, Z., Li, L. (2017). Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget, 8(47);82207-82216.
12.Guo, H., Ren, F., Zhang, L., Zhang, X., Yang, R., Xie, B. (2016). Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol Med Rep, 13(3); 2791-800.
13.He, LZ., Meng, YK., Han, YZ., Zhang, ZF., Yin, P., Sang, XX. (2016). Protective effects of luteolin against acetaminophen-induced damage in L02 liver cells. Zhongguo Zhong Yao Za Zhi, 41(22); 4234-4239.
14.Inkielewicz-Stepniak, I. (2011). Impact of fluoxetine on liver damage in rats.Pharmacological Reports, 63; 441-447.
15.Jain, NK., Singhai, AK. (2012). Ameliorative effects of Spinacia oleracea L. seeds on carbon tetrachloride(CCL4)-Induced hepatotoxicity:In Vitro and in vivo studies. Asian Pac J Trop Biomed, 2; S232-7.
16.Jaswir, I., Noviendri, D., Hasrini, RF., Octavianti, F. (2011). Cartinoids: Sources, medicinal properties and their application in food and nutraceutical industry. J Med Plants Res, 5;7119-31.
17.Kasmi, S., Bkhairia, I., Harrabi, B., Mnif, H., Marrakchi, R., Ghozzi, H. (2018). Modulatory effects of quercetin on liver histopathological, biochemical, hematological, oxidative stress and DNA alterations in rats exposed to graded doses of score 250. Toxicol Mech Methods, 28(1);12-22.
18.Kemelo, MK., Horinek, A., Canová, NK., Farghali, H. (2016). Comparative effects of quercetin and SRT1720 against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in rats: biochemical and molecular biological investigations. Eur Rev Med Pharmacol Sci, 20(2); 363-71.
19.Liu, G., Zhang, Y., Liu, C., Xu, D., Zhang, R., Cheng, Y. (2014). Luteolin alleviates alcoholic liver disease induced by chronic and binge ethanol feeding in mice. J Nutr, 144(7);1009-15.
20.Maksymchuk, O., Shysh, A., Rosohatska, I., Chashchyn, M. (2017). Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacol Rep, 69(6); 1386-1392.
21.Mane PC,Kadam DD,Chaudhari RD,Varpe KA,Sarogade SD,Thorat TV et al.(2015). Phytochemical investigations of Spinacia oleracea: An important leafy vegetable used in Indian diet.Cent Eur J Exp Biol, 4; 1-4.
22.Matboo, F., Modaresi, M. (2016). The effects of hydro-alcoholic extract of spinach on pituitary-gonadal axis in male mice. Der Pharma Chemica, 8(1); 404-407.
23.Maximas, HS., Sudha, PN., Sudhakar, K. (2014). A study of hepatoprotective activities of maethanol extract of Spinacia oleracea (Linn.) to the induced hepatotoxicity in wistar rat models. Int J Pharm Res Health Sci, 2; 287-301.
24.Mostafavi Pour, Z., Zal, F., Monabat, I., Vessal, M. (2008). Protective effects of a combination of quercetin and vitamin E against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Hepathol Res, 38(4); 385-92.
25.Noguchi, N., Niki, E. (2000). Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Rad Biol Med, 28(10); 1538-1546 .
26.Padama, VV., Baskaran, R., Roopesh, RS., Poornima, P. (2012). Quercetin attenuates lindane induced oxidative stress in wistar rats. Miol Biol Rep, 39(6); 6895-906.
27.Peng, Z., Gong, X., Yang, Y., Huang, L., Zhang, Q., Zhang, P. (2017). Hepatoprotective effect of quercetin against LPS/d-GalN induced acute liver injury in mice by inhibiting the IKK/NF-κB and MAPK signal pathways. Int Immunopharmacol, 52; 281-289.
28.Raju, SBG., Battu, RG., Manju latha, YB., Srinivas, K. (2012). Antihepatotoxic activity of smilax china roots on CCL4 induced hepatic damage in rats. Inernational Journal of Pharmacology and Pharmaceeutical Sciences, 4(1); 494-496.
29.Ramesh, BN., Rao, TS., Prakasam, A., Sambamuri, K., Rao, KS. (2010). Neuronutrition and Alzheimers disease. J Alzheimers Dis, 119; 1123-39.
30.Schmitt-Schillig, S., Schaffer, S., Weber, CC., Eckert, GP., Muller WE. (2005). Flavonoids and the aging brain. J Physiol Pharmacol, 56(Suppl1); 23-36.
31.Seydi, E., Rasekh, HR., Salimi, A., Mohsenifar, Z., Pourahmad, J. (2016). Myricetin selectively induces apoptosis on cancerous hepatocytes by directly targeting their mitochondria. Basic Clin Pharmacol Toxicol, 119(3); 249-58.
32.Shanmugam, S., Thangaraj, P., Lima, BDS., Chandran, R., de Souza Araújo, AA., Narain, N. (2016). Effects of luteolin and quercetin 3-β-d-glucoside identified from Passiflora subpeltata leaves against acetaminophen induced hepatotoxicity in rats. Biomed Pharmacother, 83;1278-1285.
33.Shohang, MJ.,Wei, YY.,Yu, N., Zhang, J., Wang, K., Patrin, G. (2011). Natural variation of folate content and composition in spinach(Spinacia oleracea L.) germplasm. J Agric Food Chem, 59; 12520-6.
34.Singh, S., Rana, SV. (2010). Ascorbic acid improved mitochondrial function in liver of arsenic-mitochondrial function in liver of arsenic- treated rat. Toxicol Ind Health, 26(5); 265-72.
35.Tai, M., Zhang, J., Song, S., Miao, R., Liu, S., Pang, Q. (2015). Protective effects of luteolin against acetaminophen-induced acute liver failure in mouse. Int Immunopharmacol, 27(1); 164-70.
36.Tsaroucha, AK., Tsiaousidou, A., Ouzounidis, N., Tsalkidou, E., Lambropoulou, M., Giakoustidis, D. (2016). Intra peritoneal administration of apigenin in liver ischemia/reperfusion injury protective effects. Saudi J Gastroenterol, 22(6); 415-422.
37.Wang, F., Liu, JC., Zhou, RJ., Zhao, X., Liu, M., Ye, H. (2017). Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact, 275; 171-177.
38.Wang, J., Miao, M., Zhang, Y., Liu, R., Li, X., Cui, Y. (2015). Quercetin ameliorates liver injury induced with Tripterygium glycosides by reducing oxidative stress and inflammation. Can J Physiol Pharmacol, 93(6); 427-33.
39.Wang, M., Sun, J., Jiang, Z., Xie, W., Zhang, X. (2015). Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am J Chin Med, 43(2); 241-54.
40.Waseem, M., Tabassum, H., Bhardwaj, M., Parvez, S. (2017). Ameliorative efficacy of quercetin against cisplatin induced mitochondrial dysfunction: Study on isolated rat liver mitochondria. Mol Med Rep, 16(3); 2939-2945.
41.Wei, CB., Tao, K., Jiang, R., Zhou, LD., Zhang, QH., Yuan, CS. (2017). Quercetin protects mouse liver against triptolide-induced hepatic injury by restoring Th17/Treg balance through Tim-3 and TLR4-MyD88-NF-κB pathway. Int Immunopharmacol, 53;73-82.
42.Xia, SF., Le, GW., Wang, P., Qiu, YY., Jiang, YY., Tang, X. (2016). Regressive effect of myricetin on hepatic steatosis in mice fed a high-fat diet. Nutrients, 8(12); E799.
43.Yang, D., Tan, X., Lv, Z., Liu, B., Baiyun, R., Lu, J. (2016). Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Sci Rep, 6; 37157.
44.Yarahmadi, A., Zal, F., Bolouki, A. (2017). Protective effects of quercetin on nicotine induced oxidative stress in 'HepG2 cells'. Toxicol Mech Methods, 27(8); 609-614.
45.Yjlmaz, A., Elbey, B., Yazgan, UC., Donder, A., Arslan, N., Arslan, S. (2016). Protective effects of caffeic acid phenethyl ester on fluoxetine-induced hepatotoxicity. BioMed Research International, 1; 1-8.
46.Zhang, H., Tan, X., Yang, D., Lu, J., Liu, B., Baiyun, R. (2017). Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats. Oncotarget, 8(25); 40982-40993.
47.Zhang, JQ., Shi, L., Xu, XN., Huang, SC., Lu, B., Ji, LL. (2014). Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism. J Zhejiang Univ Sci B, 15(12); 1039-47.
48.Zhou, RJ., Ye, H., Wang, F., Wang, JL., Xie, ML. (2017). Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice. Biochem Biophys Res Commun, 493(1);625-630.