فراوانی ژن های qnrA و sul1 در اشریشیاکلی جدا شده از ضایعات پری کاردیت و پری هپاتیت در جوجه های گوشتی استان اصفهان
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستیمحمد حری 1 , مجید غلامی آهنگران 2
1 - دانش آموخته دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران
2 - بخش بهداشت و بیماری های طیور، دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران
کلید واژه: اشریشیاکلی, ژن های مقاومت, جوجه گوشتی,
چکیده مقاله :
ز زمینه و هدف: مقاومت آنتی بیوتیکی علاوه بر پیچیده سازی درمان بیماری های عفونی دام و طیور، از نظر بهداشت عمومی نیز نگرانی بزرگی محسوب می شود. هدف از مطالعه اخیر تعیین فراوانی ژن های کد کننده مقاومت به کینولون ها و سولفانامیدها در اشریشیاکلی جدا شده از ضایعات پری کاردیت و پری هپاتیت در جوجه های گوشتی است تا پیش زمینه مناسبی برای درمان با این دسته از داروها در ضایعات ذکر شده فراهم شود. روش کار: در این مطالعه به منظور ردیابی ژن های مقاومت علیه فلوروکینولون ها و سولفانامیدها، 50 سویه باکتری از مواد پریکاردیت و پری هپاتیت جوجه های گوشتی جداسازی شد و با تست های میکروبی و بیوشیمیایی، کلنی های اشریشیاکلی تایید شد. سپس با روش معمول آنتی بیوگرام، مقاومت سویه ها نسبت به آنتی بیوتیک های تجاری انروفلوکساسین و سولفانامید+تری متوپریم بررسی شد. علاوه بر آن، با روش جوشاندن، ژنوم باکتری استخراج شد و با پرایمر های اختصاصی به تکثیر ژن های qnrA و sul1 جهت ارزیابی مقاومت آنتی بیوتیکی علیه فلوروکینولون ها و سولفانامیدها پرداخته گردید. یافته ها: در این بررسی، 54 درصد سویه های مقاوم علیه انروفلوکساسین واجد ژن qnrA و 48 درصد سویه های مقاوم علیه سولفانامیدها به علاوه تری متوپریم حاوی ژن sul1 بودند. در این بررسی سویه های مقاوم فاقد ژن های مورد بررسی نیز یافت شد که نشان از اهمیت سایر ژن های مقاومت در بروز مقاومت علیه سولفانامید ها و فلوروکینولون ها است. نتیجهگیری: ارزیابی مقاومت آنتی بیوتیکی علیه انروفلوکساسین و سولفانامیدها به کمک یک ژن امکان پذیر نیست و برای تعیین دقیق مقاومت آنتی بیوتیکی تست های فنوتیپی معمول از کارایی بیشتری نسبت به ردیابی یک ژن خاص برخوردار است.
Inroduction & Objective: Antibiotic resistance can complicate the treatment of infectious diseases of livestock and poultry. The aim of this study was to determine the frequency of genes encoding resistance to quinolones and sulfonamides in Escherichia coli (E. coli) isolated from pericarditis and periphepatitis lesions in broilers to provide a suitable background for treatment with these drugs in these lesions. Material and Methods: In this study, for detecting of resistance genes to fluoroquinolones and suvanamides, 50 bacterial strains were isolated from broiler chickens with pericarditis and periphepatitis and E. coli colonies were confirmed by microbial and biochemical tests. Then, the resistance of the strains to the commercial antibiotics (Enrofloxacin and sulfonamide + trimethoprim) was evaluated by the conventional antibiogram method. In addition, the bacterial genome was extracted by boiling method and the qnrA and sul1 genes were amplified with specific primers to evaluate antibiotic resistance against fluoroquinolones and sulfonamides. Results: In this study, 54% of enrofloxacin-resistant strains possed qnrA gene and 48% of sulfonamide-resistant strains plus trimethoprim contained sul1 gene. In this study, resistant strains without studied resistance genes were also found, which indicates the importance of other resistance genes in the development of resistance against sulfonamides and fluoroquinolones. Conclusion: Evaluation of antibiotic resistance against enrofloxacin and sulfonamides is not possible with the help of one gene and to accurately determine antibiotic resistance, routine phenotypic tests are more effective than detecting a specific gene.
1-جعفری، ر.، قنبرپور ر.، قربان پور نجف آبادی، م.، میاحی، م. 1394. تعیین الگوهای مقاومت آنتی بیوتیکی در اشریشیا کلی جداشده ازجوجه های گوشتی سالم ومبتلا به کلی سپتی سمی دراهواز. مجله میکروبیولوژی دامپزشکی، سال 11، شماره 2، ص 109-116.
2.Ansari Cheharsughi, M. S., Ahmadi-Dastgerdi, A., Gholami-Ahangaran, M. (2020). Antibacterial effect of Capparis spinosa and Pistacia atlantica extracts on growth of Escherichia coli in vitro and in vivo. Iran Vet Clin Pathol, 14(54); 115-126.
3.Cattoir, V., Nordmann, P. (2009). Plasmid mediated quinolone resistance in gram negative bacterial species: an update. Curr Med Chem. 16(8); 1028-46.
4.Costa, D., Vinue, L., Poeta, P., Coelho, A.C., Matos, M., Saenz, Y. (2009). Prevalence of extended-spectrum beta-lactamase-producing
Escherichia coli isolates in faecal samples of broilers. Vet Mic, 138; 339-344.
5.Dehghani, G.S., Gholami-Ahangaran M., Rahimi, E. (2017). The comparison of Escherichia coli contamination rate in meat of conventional and without antibiotic chickens. Iran J Food Microbiol, 4(3); 93-100.
6.Ghaniei, A., Mojaverrostami, S., Lotfallahzadeh, B., Darzi Lemraski, M., Sepehrnia, P., Imani Jajarmi, A. (2014). Geographical and seasonal variation in antimicrobial susceptibility of Escherichia coli isolated from broiler chicken carcasses in Iran. Europ J Exp Biol, 4; 173-177.
7.Gholami-Ahangaran, M., Zia-Jahromi, N. (2014). Identification of shiga toxin and intimin genes in Escherichia coli detected from canary (Serinus canaria domestica). Toxicol Indust Health, 30(8); 724-727.
8.Gholami-Ahangaran, M., Ahmadi-Dastgerdi, A., Karimi-Dehkordi, M. (2020). Thymol and carvacrol; as antibiotic alternative in green healthy poultry production. Plant Biotechnol Persa, 2(1); 22-25.
9.Gholami-Ahangaran, M., Karimi-Dehkordi, M., Miranzadeh-Mahabadi, E., Ahmadi-Dastgerdi, A. (2021). The frequency of tetracycline resistance genes in Escherichia coli strains isolated from healthy and diarrheic pet birds. Iran J Vet Res, doi: 10.22099/ijvr.2021.38454.5592
10.Gholami-Ahangaran, M., Moravvej, A.H., Safizadeh, Z., Sadeghi Nogoorani, V., Zokaei, M., Ghasemian, S.O. (2021). The evaluation of ESBL genes and antibiotic resistance rate in Escherichia coli strains isolated from turkey meat and intestinal contents in Isfahan, Iran. Iran J Vet Res, DOI: 10.22099/IJVR.2021.39493.5737.
11.Gregova, G., Kmetova, M., Kmet, V., Venglovsky, J., Feher, A. (2012). Antibiotic resistance of Escherichia coli isolated from a poultry slaughterhouse. Annal of Agricul Environ Med, 19; 75-7.
12.Hooper, D.C., Jacoby, G.A. (2015). Mechanisms of drug resistance: quinolone resistance. Annal New York Acad Sci, 1354(1); 12-18.
13.Jacoby, GA.; Strahilevitz, J. and Hooper, DC. (2014). Plasmid-mediated quinolone resistance. Microbiol Spect, 2(2);100-110.
14.Kanaan, M. H. G., Al-Shadeedi, S. M., Al-Massody, A. J., Ghasemian, A. (2020). Drug resistance and virulence traits of Acinetobacter baumannii from Turkey and chicken raw meat. Comp Immunol Microbiol Infect Dis, 70; 101-111.
15.Mooljuntee, S., Chansiripornchai, P., Chansiripornchai, N. (2010). Prevalence of the cellular and molecular antimicrobial resistance against E. coli isolated from Thai broilers. Thai. J Vet Med, 40; 311-315.
16.Mojaver Rostami, S., Ghaniei, A., Mohammadi, V. (2018). Phenotypic and genotypic resistance of Escherichia coli isolated from broiler chickens of Urmia to sulfonamides. Iran Vet J, 13(4); 86-91.
17.Miles, T., McLaughlin, W., Brown, P. (2006). Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet Res, 2; 2-7.
18.Nolan, L.K., Vaillancourt, J., Barbieri, N.L., Logue, C.M. (2020). Coli bacillosis. In: Swayne, DE; Boulianne, M; Logue, CM; McDougald, LR; Nair, V and Suarez, DL (Eds.), Disease of Poultry. (14th Edn.), Massachusetts, W.B. Publishing. PP. 770-790.
19.Paniagua-Contreras, G. L., Hernández-Jaimes, T., Monroy-Pérez, E., Vaca-Paniagua, F., Díaz-Velásquez, C., Uribe-García, A., Vaca, S. (2017). Comprehensive expression analysis of pathogenicity genes in uropathogenic Escherichia coli strains. Microb pathogen, 103; 1-7.
20.Ponce-Rivas, E., Muñoz-Márquez, M. E., Khan, A. A. (2012). Identification and molecular characterization of class 1 integrons in multiresistant Escherichia coli isolates from poultry litter. Appl Environ Microbiol, 78(15); 5444-5447.
21.Rafiei Tabatabaei, R., Nasirian, A. (2003). Isolation, identification and antimicrobial resistance patterns of Escherichia coli isolated from chicken flocks. Iran J Pharmacol Therap, 2; 39-42.
22.Shahiri, M., Gholami-Ahangaran, M., Rahimi, E. (2018). The comparing of antibiotic resistance pattern in Escherichia coli isolates from chicken meat that reared under conventional and without antibiotic condition. Iran J Food Microbiol, 5(2); 11-18.
23.Soufi, L., Sáenz, Y., Vinué, L., Abbasi, MS., Ruiz, E., Zaragaza, M. (2011). Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. Int J Food Microbiol, 144; 497-502.
24.Teimuri, S., Gholami-Ahangaran, M., Shakerian, A. (2018). The comparison of enrofloxacin residue in chicken and turkey meat, by high performance liquid chromatography in Isfahan province. Iran Food Hygiene, 8(4); 95-100.
25.Tran, J. H., Jacoby, G. A., Hooper, D. C. (2005). Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother, 49(1); 118-125.
26.Van, T.T.H., Chin, J., Chapman, T., Tran, L.T., Coloe, P.J. (2008). Safety of raw meat and shellfish in Vietnam: An analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int J Food Microbiol, 124; 217-223.
27.Wary, C., Davies, R. H. (2002). Colibacillosis. In: poultry Diseases, Edited by F. T. W. Jordan, M. Pattison, D. Alexander, and T. Foragher, 5th Ed. W. b. Saunders Company, U.S.A., pp: 125-130.
28.Yang, H., Chen, S., White, D.G., Zhao, S., McDermott, P., Walker, R. (2004). Characterization of multiple antimicrobial resistant Escherichia coli isolates from diseased chickens and swine in China. J Clin Microbiol, 42; 3483-9.
29.Zahraei Salehi, T., Farashi Bonab, S. (2006). Antibiotics susceptibility pattern of Escherichia coli strains isolated from chickens with colisepticemia in Tabriz province, Iran. Int J Poult Sci, 5; 677-684.
30.Ziauddini, A. H., Gholami-Ahangaran, M. (2020). Detection of virulence genes of intimin, hemolysin and shigatoxin in Escherichia coli isolated from Pscittacin. Iran New Cell Mol Biotechnol J, 10(38); 61-68.
_||_