نامساوی هرمیت - هادامارد برای توابع m -پیش اینوکس
محورهای موضوعی : پردازش چند رسانه ای، سیستمهای ارتباطی، سیستمهای هوشمند
1 - دانشیار، گروه ریاضی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
کلید واژه: تابع m محدب, نامساوی انتگرالی هرمیت - هادامارد, تابع محدب,
چکیده مقاله :
در سال های اخیر، نظریه تحدب توسعه سریعی را تجربه کرده است. بسیاری از محققان آن را گسترش دادهاند. تعمیم قابل توجه تابع محدب، تابع اینوکس است که توسط هانسون معرفی و مطالعه شده است. این کار نقش اینوکسی را در بهینه سازی بسیار گسترش داده است. بن و موند دستهای از توابع را معرفی کردند که به عنوان تعمیم توابع پیش اینوکس نامیده میشود. در خصوص نامساوی های تغییراتی و مشکلات مرتبط در سال های اخیر، پیته و پوستلوچه مفهوم شبه پیش اینوکسی را معرفی کردند. و آن را در مکانیک نظری و بهینه سازی غیرخطی به کار بردند. بعدها پیته و آنتچاک این مفهوم اینوکسی را معرفی، و آن را در بهینه سازی برداری اعمال کردند. این نشان میدهد که پیش اینوکسی نقش مهمی در توسعه رشتههای مختلف علوم محض و کاربردی دارد. در این مقاله ابتدا مفهوم -پیش اینوکس معرفی و سپس قضیه هرمیت - هادامارد را برای آن بیان و ثابت میکنیم و بیان خواهیم کرد که نامساوی های قبلی به د ست آمده نتیجه مستقیمی از قضیه اصلی ما میباشند.
Abstract: In recent years, convexity theory has experienced rapid development. Many researchers have expanded it. A notable generalization of the convex function is the Inox function introduced and studied by Hanson. This has greatly expanded the role of inox in optimization. Ben and Mond introduced a class of functions called generalizations of pre-Inox functions. Regarding change inequalities and related problems in recent years, Pite and Postloche introduced the concept of pseudo pre-invex, and applied it in theoretical mechanics and nonlinear optimization. Later, Pite and Antchak introduced this concept of invex, and applied it to vector optimization. This shows that pre-invexity plays an important role in the development of various fields of pure and applied sciences. In this article, we first introduce the concept of -pre-inox and then state and prove the Hermit-Hadamard theorem for it, and we will state that the previously obtained inequalities are a direct result of our main theorem. In this article, we first introduce the concept of invex sets and pre-invex functions. Then state and prove the Hermit-Hadamard theorem for it, and state that the previous inequalities are a direct result of our main theorem.Introduction: Quantum calculus is known as the study of differential and integral calculus without restrictions. Euler (1783-1707) was the first to study quantum calculus. He introduced q in Newton's infinite series compositions. In the early 20th century, the study of quantum calculus was started by Jackson. In quantum computing, we obtain mathematical equivalents of q objects that can be recovered as . Note that quantum calculus is a subset of time scale calculus. The time scale of calculus provides a unified framework for the study of dynamical equations in both discrete and continuous domains. That in quantum calculus, we deal with a specific time scale called the q time scale. Quantum calculus is a bridge between mathematics and physics. Due to the significant applications of quantum computing in mathematics and physics, this issue has been the focus of many researchers. As a result, quantum calculus has emerged as a fascinating field. In recent years, convexity theory has experienced rapid development. Many researchers have expanded it. A notable generalization of the convex function is the inex function, which was introduced and studied by Hanson [1]. This has greatly expanded the role of inox in optimization. Ben and Mond [2] introduced a class of functions called generalizations of pre-invex functions.This fundamental result of Hermit and Hadamard (HH) has obtained by many mathematicians, and as a result, this inequality has been extended by Noor in various ways using new ideas and obtained the Hermit-Hadamard inequality for pre-invex functions. Regarding variational inequalities and related problems in recent years, Pite and Postloche [3],[4] and [5] introduced the concept of pseudo pre-invex, and applied it in theoretical mechanics and nonlinear optimization. Later, Pite and Antchak [6] introduced this concept of inexity, and applied it in vector optimization. This shows that pre-invex plays an important role in the development of various fields of pure and applied sciences. For more details on the quantum calculus see references [7].MethodNo method applicable.Results and Discussion: In This article, we improve the Hermite-Hadamard (HH) integral inequality for - preinvex functions.Assuming , Theorem 3.1 of the article [8], that is, relation (3) is obtained. Assuming , the main theorem of the article [9] and and , Hermit Hadamard's main inequality is obtained.
[1] M. A. Hanson, “On sufficiency of the Kuhn-Tucker conditions,” J. Math. Anal. Appl., vol. 80, no. 2, 1981, doi: 10.1016/0022-247X(81)90123-2.
[2] A. Ben-I. and B. Mond, “What is invexity?,” J. Aust. Math. Soc. Ser. B. Appl. Math., vol. 28, no. 1, 1986, doi: 10.1017/s0334270000005142.
[3] Pitea A. and Postolache M., “‘Minimization of vector sofcurvilinear functional son these condorderjetbundle: sufficient efficiency conditions,’” Optim. Lett, vol. 8, no. 6, pp. 1657--1669, 2012.
[4] Pitea A. and Postolache M., “‘Duality theorems for a newclass of multitime multiobjective variational problems,’” J. Glob. Optim., vol. 54, no. 1, pp. 47--58, 2012.
[5] Pitea A. and Postolache M., “‘Minimization of vector sofcurvilinear functional sonthe second or derjetbundle,’” Optim. Lett., vol. 6, no. 3, pp. 459--470, 2012.
[6] A. Pitea and T. Antczak, “Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems,” J. Inequalities Appl., vol. 2014, no. 1, 2014, doi: 10.1186/1029-242X-2014-333.
[7] M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. E. Macías-Díaz, and Y. S. Hamed, “Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation,” Alexandria Eng. J., vol. 61, no. 9, 2022, doi: 10.1016/j.aej.2021.12.052.
[8] M. A. Noor, K. I. Noor, and M. U. Awan, “Some quantum integral inequalities via preinvex functions,” Appl. Math. Comput., vol. 269, 2015, doi: 10.1016/j.amc.2015.07.078.
[9] G. Amirbostaghi, M. Asadi, and M. R. Mardanbeigi, “m-Convex Structure on b-Metric Spaces,” Filomat, vol. 35, no. 14, 2021, doi: 10.2298/FIL2114765A.
[10] M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, and Y. M. Chu, “New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions,” Adv. Differ. Equations, vol. 2021, no. 1, 2021, doi: 10.1186/s13662-021-03226-x.
_||_