توزیع مکانی برخی فلزات سنگین در کاربریهای کشاورزی و مرتع (مطالعه موردی: شهر صنعتی شازند اراک)
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیلیلا زارعی 1 , سهیلاسادات هاشمی 2 , مهدی نجفی قیری 3
1 - دانش آموخته کارشناسی ارشد علوم خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران
2 - استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران
3 - دانشیار گروه علوم خاک، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، ایران
کلید واژه: آلاینده, کریجینگ, زمینآمار, کادمیم, سرب,
چکیده مقاله :
خاک محیط طبیعی برای رشد گیاهان است و به دلیل اهمیت آن، بررسی توزیع عناصر سنگین جهت پایش آلودگی خاک و حفظ کیفیت محیطزیست ضروری است. این مطالعه باهدف بررسی توزیع مکانی برخی فلزات سنگین در خاکهای سطحی بخشی از شهرستان شازند صورت گرفت. ۷۶ نمونه خاکهای سطحی از عمق ۳۰-0 سانتیمتری از منطقه مطالعاتی بهصورت تصادفی جمعآوری شد. پس از آمادهسازی نمونهها برخی خصوصیات فیزیکی و شیمیائی خاکها و مقدار کل عناصر سرب، کادمیم، نیکل، روی و مس در آنها تعیین شد. میانگین غلظت سرب، روی، مس، کادمیم و نیکل به ترتیب برابر 20/31، 12/54، 11/23، 05/2 و 36/59 میلیگرم بر کیلوگرم محاسبه شد. همبستگی مثبت و معنیداری بین عناصر نیکل با مس (01/0>p، 41/0 r=) و روی (01/0>p، 5/0 r=) مشخص شد. همچنین همبستگی مثبت و معنیداری بین مقدار مس با روی (01/0>p، 4/0r=) مشاهده شد. تغییرنمای همه جهته عناصر مورد مطالعه ترسیم گردید و سپس الگوی مناسب برآن برازش داده شد. نتایج تجزیههای زمینآماری نشان داد که مدل کروی بهترین مدل برازش دادهشده برای غلظت عناصر مورد مطالعه است. در نهایت بهوسیله روش کریجینگ معمولی نقشه پراکنش مکانی عناصر مورد مطالعه ترسیم گردید. همبستگی مکانی قوی (نسبت اثر قطعهای به حد آستانه کمتر از 25/0) برای عنصر سرب بدست آمد. براساس حد استاندارد، سرب و کادمیم بیشترین آلودگی را به ترتیب در کاربری مرتع و کشاورزی در منطقه نشان دادند. توصیه میشود جهت افزایش کیفیت خاک و کاهش دادن تخریب آن از آلایندهها، عملیات حفاطتی مناسب بکار برده شود.
Soil is a natural environment for plant growth and due to its importance, the study of heavy metal distribution for soil contamination monitoring and environmental quality maintaining is necessary. This investigation was performed to study the spatial variability of some heavy metals in some surface soils of the Shazand City. A total of 76 soil surface samples were randomly collected from a depth of 0-30 cm in the study area. After preparation of the samples, some physico-chemical characteristics and the total amount of, lead (Pb), cadmium (Cd), nikel (Ni), zinc (Zn) and copper (Cu) were measured. Mean concentrations of Pb, Cd, Ni, Zn and Cu were 31.20, 54.12, 23.11, 2.05 and 59.36 mgkg-1, respectively. Significant correlations were found between Ni with Cu (r= 0.41, p<0.01) and Zn (r= 0.5, p<0.01). Also, a significant correlation was obsrved between Cu and Zn (r= 0.4, p<0.01). The spatial variability of these variables was examined by variogram models and ordinary kriging. The results of geostatistical analysis showed that the spherical model was the best model for describing the spatial variability of all studied elements. Strong spatial dependence (the ratio of nugget to sill less than 0.25) was obtained for the lead element. According to the standard limits, Pb and Cd showed the highest pollution in rangeland and agricultural land use in the study area, respectively. It’s recommended to increasing soil quality and reduces it’s degradation from pollutants applied proper environmental proceeding.
1. Agarwal SK. 2009. Heavy Metal Pollution. APH Publishing Corp, New Delhi.
2. Amini M, Khademi H, Afyuni M, Abbaspour KC. 2005. Variability of available cadmium in relation to soil properties and landuse in an arid region in central Iran. Water Air Soil Pollution, 162: 205- 218. doi:https://doi.org/10.1007/s11270-005-6273-4.
3. Bagheri R, Erfanifard SY. 2020. Spatial distribution of persian Oak decline using a combination of geostatistical techniques and remote sensing (Case study: Barm plain, Fars province). Journal of RS and GIS for Natural Resources, 11(1): 104-120. (In Persian).
4. Banaei MH. 1998. Soil moisture and temperature regimes map of Iran. Soil and Water Research institute of Iran. http://www.swri.ir/en-US/DouranPortal/1/page/Home.
5. Chen TB, Zheng YM, Lei M, Huang ZC, Wu HT. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4): 542–551.doi:https://doi.10.1016/j.chemosphere.2004.12.072.
6. Chen T, Liu X, Zhu M, Zhao K, Wu J, Xu J, Huang P. 2008. Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environment Pollution, 151: 67-78. doi:https://doi: 10.1016/j.envpol.2007.03.004.
7. Dankoub Z, Ayoubi S, Khademi H, Lu SG. 2012. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, central Iran. Pedosphere, 22: 33-47. doi: https://doi.org/10.1016/S1002-0160(11)60189-6.
8. Diawara M, Litt JS, Unis D, Alfonso N, Martinez L, Crock JG, Smith DB, Carsella J. 2006. Arsenic, Cadmium, lead, and mercury in surface soils, Pueblo, Colorado: implications for population health risk. Environment Geochemistry Health, 28: 297-315. doi:https://doi.10.1007/s10653-005-9000-6.
9. Farooq Akbar K, Hale WHG, Headley AD, Athar M. 2006. Heavy metal contamination of road side soils of northern England. Soil Water Research, 1: 158-163. doi:https://doi.10.17221/6517-SWR.
10. Guo W, Wu T, Jiang G, Pu L, Zhang J, Xu F, Yu H, Xie X. 2021. Spatial distribution, environmental risk and safe utilization zoning of soil heavy metals in farmland, subtropical China. Land, 10: 569. doi:https://doi.org/10.3390/land10060569.
11. Hani A, Sinae N, Gholami A. 2014. Spatial variability of heavy metals in the soil of Ahwaz using geostatistical methods. Internation Journal of Environment Science and Development, 5(3): 294-298. doi:https://doi.10.7763/IJESD.2014.V5.495.
12. Hu Sh, Chen X, Jing F, Liu W, Wen X. 2020. An assessment of spatial distribution and source identification of five toxic heavy metals in Nanjing, China. Environment Engineering Research, 26(3): 200135. doi: https://doi.org/10.4491/eer.2020.135.
13. Kabata-Pendias A, Pendias H. 2001. Trace elements in soils and plants. Third Ed. CRC Press, Boca raton: London. 413 Pages. http://base.dnsgb.com.ua.
14. Li F, Fan Z, Xiao P, Oh K, Ma X, Hou W. 2009. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in northeast China. Environment Geology, 57:1815-1823. doi:https://doi.10.1007/s00254-008-1469-8.
15. Li J, He M, Ha W, Gu Y. 2009. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. Journal Hazardous Materials, 164: 976–981. doi: https://doi.org/10.1016/j.jhazmat.2008.08.112.
16. Linnik VG, Bauer TV, Minkina TM, Mandzhieva SS, Mazarji M. 2022. Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environmental Geochemistry and Health, 44: 319–333. doi:https://doi.org/10.1007/s10653-020-00688-y.
17. Mahmoudabadi E, Karimi Karouyeh A. 2015. Mapping of calcium carbonate equivalent and clay content of surface soil using geostatistical methods (Case study: Chitgar park, Tehran). Journal of RS and GIS for Natural Resources, 6(3): 73-85. (In Persian).
18. Matkan AA, Kazemi A, Gilly MR, Ashourloo D. 2009. Using RS and GIS for considering cadmium distribution and polluted vegetation in Esfahan province. Environmental Sciences, 6(2): 65-77. https://envs.sbu.ac.ir/article_95511.html. (In Persian).
19. Mico C, Recatala L, Peri, M, Sanchez J. 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65: 863-872. doi:https://doi.10.1016/j.chemosphere.2006.03.016.
20. Rodriguez Martin JA, Lopez Aria M, Grau Corbi JM. 2006. Heavy metal contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environment Pollutation, 144: 1001–1012. doi:https://doi.org/10.1016/j.envpol.2006.01.045.
21. Sharma R, Sood K. 2020. Characterization of spatial variability of soil parameters in Apple orchards of Himalayan region using geostatistical analysis. Communications in Soil Science and Plant Analysis, (8):1065–1077. doi: https://doi.org/10.1080/00103624.2020.1744637.
22. Shirani M. 2007. Spatial variability of Pb, Cd, Ni and Zn in some agricultur and urban soils around Mashhad-Chenara high way. MSc thesis of Soil Science, Ferdosi Uneversity,Mashhad, Iran. (In Persian).
23. Singh BR, Steinnes E. 1994. Soil and water contamination by heavy metals. p. 233-271. In Lai R, Stewart BA (Eds), Soil Processes and Water Quality. Lewis Pub: London.
24. Sodango TH, Li X, Sh J, Shang J, Bao Z. 2021. Sources, spatial distribution and extent of heavy metals in relation to land use, lithology and landform in Fuzhou city, China. Minerals, 11: 1325. doi:https://doi.org/10.3390/min11121325.
25. Sposito G, Lund LJ, Chang AC. 1982. Trace metal chemistry in arid zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society American Journal, 46: 260-264. doi:https://doi.org/10.2136/sssaj1982.03615995004600020009x.
26. Sun H, Li J, Mao X. 2012. Heavy metals spatial distribution characteristics in a copper mining area of Zhejiang Province. Journal Geogr Inf System, 4: 46-54. doi:https://doi. 10.4236/jgis.2012.41007.
27. Taghipour M, Ayoubi Sh, Khademi H. 2011. Contribution of lithologic and anthropogenic factors to surface soils heavy metals in western Iran using multivariate geostatistical analysis. Soil and Sediment Contamination, 20: 921-937. doi:https://doi.org/10.1080/15320383.2011.620045.
28. Viard B, Pihan F, Protneyrat S, Pihan JC. 2004. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminacea and lands nails. Chemosphere, 55: 1349-1359. doi:https://doi.10.1016/j.chemosphere.2004.01.003.
29. Wang J, Re H, Zhang X. 2006. Distribution patterns of lead in urban soil and dust in Shenyang city, northeast China. Environmental Geochemistry and health, 28: 53-59. doi:https://doi.10.1007/s10653-005-9011-3.
30. Yang P, Mao R, Sha H, Gao Y. 2009. An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. Journal of Hazardous Materials, 15(67): 1246-1251. doi:https://doi.10.1016/j.jhazmat.2009.01.127.
31. Yang Z, Jing F, Chen X, Liu W, Liu B, Lin G, Huang R, Liu W. 2018. Spatial distribution and sources of seven available heavy metals in the paddy soil of red region in Hunan Province of China. Environmental Monitoring and Assessment, 190: 611. doi: https://doi.org/10.1007/s10661-018-6995-6.
32. Zhao K, Fu W, Ye Z, Zhang C. 2015. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China. International Journal of Environmental Research and Public Health, 12: 1577-1594. doi:https://doi.org/10.3390/ijerph120201577.