ارزیابی کارایی و پهنه بندی کیفی منابع آب زیرزمینی دشت نقده جهت مصارف شرب، کشاورزی و صنعت
محورهای موضوعی : توسعه سیستم های مکانیفریبا صادقی اقدم 1 , عطا الله ندیری 2 , اصغر اصغری مقدم 3 , اسفندیار عباس نوین پور 4
1 - دانشجوی دکتری هیدروژئولوژی، دانشکده علوم طبیعی، دانشگاه تبریز
2 - دانشیار گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز
3 - استاد گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز
4 - استادیار گروه زمین شناسی، دانشکده علوم، دانشگاه ارومیه
کلید واژه: آب زیرزمینی, سیستم اطلاعات جغرافیایی, دشت نقده, نقشه پهنه بندی کیفی,
چکیده مقاله :
آبخوان دشت نقده، واقع در قسمت جنوب غربی دریاچه ارومیه تأمین کننده نیازهای آبی این ناحیه است. به منظور ارزیابی و طبقه بندی کیفی منابع آبی این دشت، نمونه برداری از تعداد 33 حلقه چاه بهره برداری در تیرماه سال آبی 96-1395 انجام گرفت و ویژگی های هیدروشیمیایی، غلظت یون های اصلی، فرعی و فلزات سنگین نمونه های آبی توسط روش های استاندارد اندازه گیری شد. با استفاده از داده های حاصل، امکان سنجی استفاده از آب زیرزمینی در مصارف مختلف با کاربرد روش های گرافیکی و معیارهای طبقه بندی کیفی شولر (شرب)، ویلکاکس (کشاورزی) و لانژیلر (صنعت) موردبررسی قرار گرفت. براساس اطلاعات موجود، به منظور تهیه نقشه های پهنه بندی کیفی مصارف آب، توزیع پارامترهای مؤثر در کیفیت هر نوع از کاربری با استفاده از سامانه اطلاعات جغرافیایی (GIS) و روش درونیابی زمین آماری (کریجینگ) برای سطح دشت انجام گرفت. در این راستا پس از ایجاد لایه های رستری پارامترهای مؤثر، رده بندی و تلفیق آنها، نقشه های نهایی پهنه بندی کیفی تهیه گردید. بر پایه نتایج درجه سختی آب شرب تمام نمونه ها بالا بوده و غلظت برخی از پارامترهای بیش از حد مجاز استاندارد آب شرب (WHO) و کشاورزی (FAO) است که می بایست کیفیت نامناسب این منابع موردتوجه قرار گیرد. ارزیابی کیفیت آب صنعتی، نشانگر رسوبگذار بودن 61% و خورنده بودن 39% نمونه ها، و همچنین کیفیت آب کشاورزی نشانگر کیفیت خوب و متوسط به ترتیب 46% و 39% نمونه های آبی بود. تجزیه و تحلیل نقشه های پهنه بندی کیفی با اطلاعات زمین شناسی، کاربری اراضی و توزیع واحدهای صنعتی دشت صورت گرفت و مشخص گردید که آب های زیرزمینی باکیفیت نامناسب به طور عمده در نواحی شمالی مرکز دشت و نواحی شرقی دشت وجود دارند.
The Aquifer of Naqadeh plain, located in the southwestern part of Urmia Lake, providing water supply of the area. In order to evaluate and classify water resources quality, 33 samples were taken from operational wells in June 2016. Hydrogeochemical characteristics and concentration of heavy metals, major and minor ions were measured by means of standard methods. Feasibility studies for various consumption of groundwater were investigated using graphical methods and quality criteria of Schuler (drinking), Wilcox (agriculture) and Langelier (industrial) classification. Based on the available information, the spatial distribution of the effective parameters using GIS and geostatistical interpolation method (Kriging) was applied to generate water quality zoning maps. In this regard, the final maps of quality, zoning were prepared after creating the raster layers of the effective parameters, classification, and integration. According to the results the hardness degree of drinking water of all samples was high, and also the concentration of some parameters was more than drinking (WHO) and agriculture (FAO) water standard, so inappropriate quality of these resources should be considered. The evaluation of industrial water quality showed scaling property of 61% and corrosive property of 39% of samples. In addition, the agricultural water quality illustrated that 46% and 39% of water samples were placed in good and average quality, respectively. Analyzing the quality, zoning maps with geological information, land use and distribution of industrial units were carried out in the plain and the results show that quality of groundwater is inappropriate mainly in the northern and eastern parts of the plain.
بهزادی کریمی، ح. و ک. امیدوار. 1396. تحلیل فضایی پارامترهای شیمیایی مؤثر در کیفیت آب زیرزمینی با استفاده از تکنیک تحلیل عاملی و مدل های زمینآماری (مطالعه موردی: دشت بیضاء-زرقان). سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 8(4): 17-35.
جهاد کشاورزی استان آذربایجان غربی. 1394. آمار محصولات کشاورزی زراعی و باغات شهرستان نقده در سال 94-1393. 100 صفحه.
خداکرمی، ل.، ع. ر. سفیانیان، ا. محمدی توفیق، و ن. میرغفاری. 1393. بررسی غلظت عناصر سنگین مس، روی و آرسنیک با استفاده از RS و GIS (مطالعۀ موردی: حوزه آبخیز کبودرآهنگ، رزن و خونجین- تلخاب در استان همدان). سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5(3): 45-55.
دسترنج، ع.، ا. نوحه گر، ا. ملکیان، ح. غلامی، م. جعفری اقدم. 1396. ارزیابی و تهیه نقشة آسیب پذیری آلودگی آبخوان کارستی دالاهو. سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 8(2): 1-16.
رحیمی بلوچی، ل.، آ. زرع کار، و ب. ملکمحمدی. 1393. بررسی تغییرات زیست محیطی با استفاده از سنجشازدور و شاخص کیفیت آب (مطالعة موردی: تالاب بینالمللی شادگان). سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5(2): 61-73.
سازمان آب منطقه ای استان آذربایجان غربی. 1390. مطالعات بهنگام سازی بیلان منابع آب محدوده های مطالعاتی حوضۀ آبریز دریاچه ارومیه منتهی به سال آبی 89-90. گزارش بیلان منابع آب محدوده مطالعاتی نقده، جلد 5، ضمیمه 7، کد 3007.
سازمان حفاظت محیطزیست. 1395. استاندارد کیفیت آب های ایران. معاونت محیطزیست انسانی دفتر آبوخاک. 90 صفحه.
صادقی اقدم، ف. 1391. بررسی تغییرات زمانی و مکانی کیفیت منابع آب ورودی به سد سهند هشترود با تأکید بر آنومالی آرسنیک. پایان نامه کارشناسی ارشد. گروه زمین شناسی. دانشگاه تبریز. 145 صفحه.
صادقی اقدم، ف.، ا. اصغری مقدم، ع. ا. ندیری. 1397. بررسی شوری آب زیرزمینی آبخوان دشت نقده با استفاده از دیاگرام تحول رخساره های هیدروشیمیایی (HFE). تحقیقات منابع آب ایران، آماده انتشار، انتشار آنلاین از تاریخ 27 مهر 1397.
عباسی، ا. پ.، ح. ا. امانی، و م. زارعیان. 1393. ارزیابی کمی وضعیت بیابان زایی با استفاده از مدل مدالوس و سیستم اطلاعات جغرافیایی (مطالعه موردی: دشت شمیل- استان هرمزگان). سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5(1): 87-97.
وازت نیرو. 1390. راهنمای مطالعات کیفیت آب مخازن سدهای بزرگ. معاونت برنامه ریزی و نظارت راهبردی رئیس جمهور، نشریه 550، 112 صفحه.
Abbasnia A, Yousefi N, Mahvi AH, Nabizadeh R, Radfard M, Yousefi M, Alimohammadi M. 2018. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal: 1-18.
Ahmad Yahya S, Fauziah Ahmad MK. 2013. Study of spatial variability into contaminated soil using Kriging techniques at Basrah. International Journal of Scientific and Research Publications, 3(6): 1-6.
Andrew ED, Clesceri LS, Greenberg AE, Franson MAH. 2005. Standard methods for the examination of water and wastewater. American Public Health Association, 21: 1600.
Arumugam K, Rajesh Kumar A, Elangovan K. 2015. Evolution of Hydrochemical Parameters and Quality Assessment of Groundwater in Tirupur Region, Tamil Nadu, India. International Journal of Environmental Research, 9(3): 1023-1036.
ASTM (American Society for Testing and Materials). 2002. Annual book of ASTM standards. Section 11, Water and Environmental Technology, 11.01. 1020 pp.
Ayers RS, Westcot DW. 1994. Water quality for agriculture- Food and Agriculture Organization of the United Nations, Rome, Italy. FAO Irrigation and Drainage Paper, 29 Rev.
Bhunia GS, Keshavarzi A, Shit PK, Omran E-SE, Bagherzadeh A. 2018. Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Applied Water Science, 8(6): 168.
Deutsch CV, Journel AG. 1998. GSLIB Geostatistical Software Library and User’s Guide. Oxford University Press. 345 pp.
Dougherty TC, Hall AW. 1995. Environmental Impact Assessment of Irrigation and Drainage Projects- Food and Agriculture Organization of the United Nations (FAO). 145 pp.
Emberger L. 1930. La vegetation de la region mediterraneenne. Essai d’une classification des groupments vegetaux. Rev. Gen. Bot, 42: 641-662.
Fetter CW. 1994. Applied Hydrogeology. New York: Prentice hall publishing, 691 pp.
Fetter CW. 1999. Contaminant hydrogeology. Second edition. Prentic Hall Inc, 500 pp.
Hounslow AW. 1995. Water quality data: analysis and interpretation. Lewis publishers, 397 pp.
Kadhim N. 2018. Geospatial technology for groundwater quality parameter assessment in Dhi-Qar governorateiraq by using GIS. International Journal of Civil Engineering and Technology (IJCIET), 9(1): 358-370.
Krause P, Boyle D, Bäse F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5: 89-97.
Li J, Heap AD. 2014. Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53: 173-189.
Llyod J, Heathcote J. 1985. Natural inorganic hydrochemistry in relation to groundwater: an introduction. Clarendon Press, Oxford. 296 pp.
Nadiri AA, Aghdam FS, Khatibi R, Moghaddam AA. 2018. The problem of identifying arsenic anomalies in the basin of Sahand dam through risk-based ‘soft modelling’. Science of the Total Environment, 613: 693-706.
Nag S, Das S. 2014. Quality assessment of groundwater with special emphasis on irrigation and domestic suitability in Suri I & II Blocks, Birbhum District, West Bengal, India. American Journal of Water Resources, 2(4): 81-98.
Nas B. 2009. Geostatistical Approach to Assessment of Spatial Distribution of Groundwater Quality. Polish Journal of Environmental Studies, 18(6): 1073-1082.
Ntanganedzeni B, Elumalai V, Rajmohan N. 2018. Coastal Aquifer Contamination and Geochemical Processes Evaluation in Tugela Catchment, South Africa-Geochemical and Statistical Approaches. Water, 10(6): 687.
Özler HM. 2000. Hydrogeology and geochemistry in the Curuksu (Denizli) hydrothermal field, western Turkey. Environmental Geology, 39(10): 1169-1180.
Panaskar D, Wagh V, Muley A, Mukate S, Pawar R, Aamalawar M. 2016. Evaluating groundwater suitability for the domestic, irrigation, and industrial purposes in Nanded Tehsil, Maharashtra, India, using GIS and statistics. Arabian Journal of Geosciences, 9(13): 615.
Pillai G, Khan I. 2016. Assessment of Groundwater Suitability for Drinking and Irrigation Purpose in the Dimbhe Command Area of River Ghod, Maharashtra, India. Journal of Geoscience and Environment Protection, 4(12): 142-157.
Purwaningsih E, Notosiswoyo S. 2013. Hydrochemical study of groundwater in Sidoarjo mud volcano area, East Java Indonesia. Procedia Earth and Planetary Science, 6: 234-241.
Qishlaqi A, Kordian S, Parsaie A. 2017. Hydrochemical evaluation of river water quality-a case study. Applied Water Science, 7(5): 2337-2342.
Rice EW, Baird RB, Eaton AD. 2012. Standard Methods for the Examination of Water and Wastewater. 22th edition. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation. 320 pp.
Richard LA. 1954. Diagnosis and impovemet of saline alkali soils agriculture, Vol 160, Handbook 60, US Department of Agriculture, Washington DC. 420 pp.
Sarangi A, Cox C, Madramootoo C. 2005. Geostatistical methods for prediction of spatial variability of rainfall in a mountainous region. Transactions of the ASAE, 48(3): 943-954.
Schoeller H. 1955. Geochimie des eaux souterraines. Rev. Inst. Franc. Pètrole. Paris, 10(3):181- 213.
Schwartz FW, Zhang H. 2003. Fundamentals of Ground Water: John Wiley and Sons Inc. 275 pp.
Singh H, Bitz C, Nusbaumer J, Noone D. 2016. A mathematical framework for analysis of water tracers: Part 1: Development of theory and application to the preindustrial mean state. Journal of Advances in Modeling Earth Systems, 8(2): 991-1013.
Todd DK, Mays LW. 2005. Groundwater hydrology. John Wiley and Sons, New York, 535 pp.
WHO. 2011. Guidelines for Drinking-water Quality. 4th ed. World Health Organization, 541 pp.
Wilcox LV. 1955. Classification and use of irrigation waters. Circular No. 696. Washington: US Department of Agriculture. 19 pp.
Yang C-S, Kao S-P, Lee F-B, Hung P-S. 2004. Twelve different interpolation methods: A case study of Surfer 8.0. In: Proceedings of the XXth ISPRS Congress. pp 778-785.
Zhang Y, Chu C, Li T, Xu S, Liu L, Ju M. 2017. A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Science of The Total Environment, 599: 721-731.
_||_