Quercetin and its derivatives are potent inhibitors of the dengue virus
محورهای موضوعی : Ethnopharmacology
1 - Department of Biochemistry, Adamawa State University Mubi, Adamawa State, Nigeria-West Africa|CSIR-Indian Institute of Chemical Biology, 4, Raja S.C., Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India|Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
کلید واژه: Inhibition, Quercetin, Antiviral Activity, Dengue virus, Flavonoids,
چکیده مقاله :
Dengue virus belongs to the Flaviviridae family. It causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Still, no licensed antiviral or vaccine is available. Quercetin is a plant-derived flavonoid found in fruits and vegetables. Several in silico and experimental studies revealed quercetin and its derivatives as potent inhibitors of DENV. This review extensively discussed the outcomes of these studies. This review employed PRISMA guidelines for systematic review. Literature was retrieved from PubMed and other databases using the keywords "Dengue virus", "Quercetin", "Quercetin derivatives", "Flavonoids", "Antiviral Activity", "in vitro", "in vivo" and "in silico". Twenty-nine articles were screened; twenty-five met the eligibility criteria and were reviewed. This review is the first insightful and comprehensive document that reveals quercetin and quercetin derivatives are inhibitors of DENV. Quercetin could lead the way in developing antiviral drugs against dengue diseases.
Aarthy, M., Singh, S.K., 2018. Discovery of potent inhibitors for the inhibition of dengue envelope protein: An In-Silico approach. Curr. Top. Med. Chem. 18(18), 1585-1602.
Ahmad, N., Fazal, H., Ayaz, M., Abbasi, B.H., Mohammad, I., Fazal, L., 2011. Dengue fever treatment with Carica papaya L. leaves extracts. Asian. Pac. J. Trop. Biomed. 1(4), 330-333.
Akan, Z., Garip, A.I., 2013. Antioxidants may protect cancer cells from apoptosis signals and enhance cell viability. Asian. Pac. J. Can. Prev. 14, 4611-4614.
Alarcón de la Lastra, C., Martín, M.J., Motilva, V., 1994. Antiulcer and gastroprotective effects of quercetin: A gross and histologic study. Pharm. 48(1), 56-62.
Alfani, M.D., Syahrijuita, K., Sulfahri, S., 2021. Quercetin from Miana Leaf (Coleus scutellarioides (L.) Benth.) extract as an inhibitor of dengue virus NS5 protein. Easy Chair. Prep. (7121), 1-7.
Alomair, L., Fahad, A., Aman, U., Mohsin, S.J., 2021. In silico prediction of the phosphorylation of NS3 as an essential mechanism for dengue virus replication and the antiviral activity of quercetin. Biology 10(10), 1067.
Anusuya, S., Gromiha, M.M., 2016. Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: Molecular docking, molecular dynamics simulation, and binding free energy calculation. J. Biomol. Struct. Dyn. 35(13), 2895-2909.
Arima, H., Danno, G., 2002. Isolation of Antimicrobial compounds from Guava (Psidium guajava L.) and their structural elucidation. Biosci. Biotechnol. Biochem. 66(8), 1727-1730.
Baharfar, R., Rahmani, Z., Mohseni, M., Azimi, R., 2015. Evaluation of the antioxidant and antibacterial properties of ethanol extracts from berries, leaves, and stems of Hedera pastuchovii Woron. exGrossh. Nat. Prod. Res. 29(22), 2145-2148.
Balmaseda, A., Hammond, S.N., Perez, L., Tellez, Y., Saborio, S.I., Mercado, J.C., Cuadra, R., Rocha, J., Perez, M.A., Silva, S., Rocha, C., Harris, E., 2006. Serotype-specific differences in clinical manifestations of dengue. Am. J. Trop. Med. Hyg. 74(3), 449-56.
Bollati, M., Alvarez, K., Assenberg, R., Baronti, C., Canard, B., Cook, S., Bolognesi, M., 2010. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral. Res. 87(2), 125-148.
Brunton, B., Rogers, K., Phillips, E.K., Brouillette, R.B., Bouls, R., Butler, N.S., Maury, W., 2019. TIM-1 serves as a receptor for the Ebola virus in vivo, enhancing viremia and pathogenesis. PLOS Negl. Trop. Dis. 13(6), e0006983.
Canini, A., Alesiani, D., D’Arcangelo, G., Tagliatesta, P., 2007. Gas chromatography-mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J. Food Comp. Anal. 20(7), 584-590.
Chavez, D., Chai, H.B., Chagwedera, T.E., Gao, Q., Farnsworth, N.R., Cordell, G.A., Pezzuto, J.M., Kinghorn. A.D., 2001. Novel stilbenes isolated from the root bark of Ekebergia benguelensis. Tetrahedron Lett. 42, 3685-3688.
Che, P., Wang, L., Li, Q., 2009. The development, optimization, and validation of an assay for high throughput antiviral drug screening against dengue virus. Int. J. Clin. Exp. Med. 2(4), 363-373.
Chiang, L.C., Chiang, W., Liu, M.C., Lin, C.C., 2003. In vitro antiviral activities of Caesalpinia pulcherrima L. and its related flavonoids. J. Antimicrob. Chemother. 52(2), 194-198.
Chiu, S.Y.C., Dobberstein, R.H., Fong, H.H.S., Farnsworth, N.R., 1982. Oxoaporphine alkaloids from Siparuna gilgiana. J. Nat. Prod. 45(2), 229-230.
Chiow, K.H., Phoon, M.C., Putti, T., Tan, B.K.H., Chow, V.T., 2016. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med. 9(1), 1-7.
Choi, H.J., Kim, J.H., Lee, C.H., Ahn, Y.J., Song, J.H., Baek S.H., 2009a. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral. Res. 81(1), 77-81.
Choi, H.J., Song, J.H., Park, K.S., Kwon, D.H., 2009b. Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 37(3-4), 329-333.
Chopra, M., Fitzsimons, P.E., Strain, J.J., Thurnham, D.I., Howard, A.N., 2000. Non-alcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin. Chem. 46(8 Pt 1), 1162-1170.
Chu, L.W., Yang, C.J., Peng, K.J., Chen, P.L., Wang, S.J., Ping, Y.H., 2019. TIM-1 as a signal receptor triggers dengue virus-induced autophagy. Int. J. Mol. Sci. 20(19), 4893.
Coimbra, A.T., Ferreira, S., Duarte, A.P., 2020. Genus Ruta: A natural source of high value products with biological and pharmacological properties. J. Ethnopharmacol. 260, 113076.
Coles, L.S., 2016. Quercetin: A Review of Clinical Applications. Available from: http://www.chiro.org/nutrition/ABSTRACTS/Quercetin_A_Review.shtml. Retrieved 10th January 2022.
Coulerie, P., Maciuk, A., Eydoux, C., Leblanc, K., Hnawia, E. Lebouvier, N., Figadère, B., Guillemot, J.C., Nour, M., 2014. New inhibitors of the DENV-NS5 RdRp from Carpolepis laurifolia (Brongn. and Gris) as potential antiviral drugs for dengue treatment. Rec. Nat. Prod. 8(3), 286-289.
Cushnie, T.P., Lamb, A.J., 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 22(1), 132-149.
De Sousa, L.R., Wu, H., Nebo, L., Fernandes, J.B., da Silva, M.F., Kiefer, W., 2015. Flavonoids as non-competitive inhibitors of dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies. Bioorg. Med. Chem. 23(3), 466-470.
Dejarnac, O., Hafirassou, M.L., Chazal, M., Versapuech, M., Gaillard, J., Perera-Lecoin, M., Amara, A., 2018. TIM-1 ubiquitination mediates dengue virus entry. Cell. Rep. 23(6), 1779-1793.
Dewi, B.E., Desti, H., Ratningpoeti, E., Sudiro, M., Fithriyah, Angelina, M., 2020. Effectivity of Quercetin as Antiviral to Dengue Virus-2 Strain New Guinea C in Huh 7-it 1 Cell Line. IOP Conference Series: Earth and Environ Science. 462(1), 012-033.
Dewi, B.E., Ratningpoeti, E., Desti, H., Angelina, M., 2019. In vitro and in silico Study to Evaluate the Effectiveness of Quercitrin as Antiviral Drug to Dengue Virus. The 4th Biomedical Engineering’s Recent Progress in Biomaterials, Drugs Development, Health, And Medical Devices: Proceedings of the International Symposium of Biomedical Engineering (ISBE). AIP. Conf. Proc. 2193(1), 1-7.
Dubber, M.J., Kanfer I., 2004. High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. J. Pharm. Pharm. Sci. 24, 7(3), 303-309.
Dwivedi, V.D., Tripathi, I.P., Tripathi, R.C., Singh, R., Yadava, U., Mishra, S.K., 2018. In silico docking of quercetin-3-O-β-D-glucoside from Azadirachta indica A. Juss. with NS2B-NS3 protease in dengue virus. Online J. Bioinform. 19(2),175-180.
Edwards, R.L., Lyon, T., Litwin, S.E., Rabovsky, A., Symons, J.D., Jalili, T., 2007. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 137(11), 2405-2411.
Egert, S., Bosy-Westphal, A., Seiberl, J., Kürbitz, C., Settler, U., Plachta-Danielzik, S., Wagner, A.E., Frank, J., Schrezenmeir, J., Rimbach, G., Wolffram, S., Muller, M.J., 2009. Quercetin reduces systolic blood pressure and plasma oxidized low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 102(7), 1065-1074.
Evers, D.L., Chao, C.F., Wang, X., Zhang, Z., Huong, S.M., Huang, E.S., 2005. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral. Res. 68(3), 124-134.
Ferreres, F., Taveira, M., Pereira, D.M., Valentão, P., Andrade, P.B., 2010. Tomato (Lycopersicon esculentum L.) seeds: new flavonols and cytotoxic effect. J. Agric. Food. Chem. 58, 2854-2561.
Flores-Ocelotl, M.R., Rosas-Murrieta, N.H., Moreno, D.A., Vallejo-Ruiz, V., Reyes-Leyva, J., Domínguez, F., Santos-López, G., 2018. Taraxacum officinale L. and Urtica dioica L. extracts inhibit dengue virus serotype 2 replication in vitro. BMC Complement. Altern. Med. 18(95), 3-10.
Frei, B., Baltisberger, M., Sticher, O., Heinrich, M., 1998. Medical ethnobotany of the Zapotecs of the Isthmus-Sierra (Oaxaca, Mexico): Documentation and assessment of indigenous uses. J. Ethnopharmacol. 62, 149-165.
Fried, J.R., Gibbons, R.V., Kalayanarooj, S., Thomas, S.J., Srikiatkhachorn, A., Yoon, I.K., Cummings, D.A.T., 2010. Serotype-specific differences in the risk of dengue hemorrhagic fever: An analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLOS. Negl. Trop. Dis. 4(3), e617.
García-Mediavilla, V., Crespo, I., Collado, P.S., Esteller, A., Sánchez-Campos, S., Tuñón, M.J., Gonzalez-Gallego, J., 2007. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol. 557(2-3), 221-229.
Garzón, G.A., Narváez-Cuenca, C.E., Vincken, J.P., Gruppen, H., 2017. Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chem. 217, 364-372.
Getaneh, S., Girma, Z., 2014. An ethnobotanical study of medicinal plants in Debre Libanos Wereda, Central Ethiopia. Afr. J. Plant Sci. 8, 366-379.
Goh, V.S.L., Mok, C.K., Chu, J.J.H., 2020. Antiviral natural products for arbovirus infections. Molecules. 25(12), 2796.
Gomes, D.E., Caruso, Í.P., Araujo, G.C., Lourenço, I.O., Melo, F.A., Cornélio, M.L., Souza, F.P., 2016. Experimental evidence and molecular modelling of the interaction between hRSV-NS1 and quercetin. Int. J. Biol. Macromol. 85, 40-47.
Gomez, M., Rocha, E.A., Gomberg, E., 2016. Análise das publicações etnobotânicas sobre plantas medicinais da Mata Atlântica na Região Sul do Estado da Bahia, Brasil. Fitos, 10(5), 115-140.
Guzman, M.G., Alvarez, A., Vazquez, S., Alvarez, M., Rosario, D., Pelaez, O., Cruz, G., Rodriguez, R., Pavon, A., Gonzalez, A., Morier, L., Ruiz, D., Kouri, G., Halstead, S.B., 2012. Epidemiological studies on dengue virus type 3 in Playa municipality, Havana, Cuba, 2001-2002. Int. J. Infect. Dis.16, e198-e203.
Hitziger, M., Heinrich, M., Edwards, P., Poll, E., Lopez, M., Krutli, P., 2016. Maya phytomedicine in Guatemala-Can cooperative research change ethnopharmacological paradigms. J. Ethnopharmacol. 186, 61-72.
Hubbard, G.P., Wolffram, S., Lovegrove, J.A., Gibbins, J.M., 2004. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost. 2(12), 2138-2145.
Igbe, I., Shen, X-F., Jiao, W., Qiang, Z., Deng, T., Li, S., Liu, W.L., Liu, H.W., Zhang, G.L., Wang, F., 2017. Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase. Oncotarget. 8(69), 113734-113748.
Irungu, B.N., Orwa, J.A., Gruhonjic, A., Fitzpatrick, P.A., Landberg, G., Kimani, F., Midiwo, J., Erdelyi, M., Yenesew, A., 2014. Constituents of the roots and leaves of Ekebergia capensis and their potential antiplasmodial and cytotoxic activities. Molecules 19, 14235-14246.
Ismail, N.A., Jusoh, S.A., 2016. Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein. Interdiscip. Sci. Comput. Life Sci. 9(4), 499-511.
Jasso-Miranda, C., Herrera-Camacho, I., Flores-Mendoza, L.K., Dominguez, F., Vallejo-Ruiz, V., Sanchez-Burgos, G.G., Reyes-Leyva, J. 2019. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotype 2 and 3 enhanced or not with antibodies. Infect. Drug. Resist. 12, 1833-1852.
Jayadevappa, M.K., Karkera, P.R., Siddappa, R.Y., Telkar, S., Karunakara, P., 2020. Investigation of plant flavonoids as potential dengue protease inhibitors. J. Herbmed. Pharmacol. 9(4), 366-373.
Johari, J., Kianmehr, A., Mustafa, M.R., Abubakar, S., Zandi, K., 2012. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int. J. Mol. Sci. 13, 16785-16795.
Khawory, M., Subki, M., Shahudin, M., Sofian, N., Latif, N., Salin, N., Zobir, S., Noordin, M., 2021. Physico-chemicals characterization of quercetin from the Carica papaya L. leaves by different extraction techniques. Open. J. Phys. Chem. 11, 129-143.
Kwon, H.J., Kim, H.H., Yoon, S.Y., Ryu, Y.B., Chang, J.S., Cho, K.O., Lee, W.S., 2010. In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. Virol. J. 7(1), 307.
Laille, M., Gerald, F., Debitus, C., 1998. In vitro antiviral activity on dengue virus of marine natural products. Cell. Mol. Life Sci. 54(2), 167-170.
Lakhanpal, P., Rai, D.K., 2007. Quercetin: A versatile flavonoid. Int. J. Med. Update 2(2), 20-37.
Lamson, D.W., Brignall, M.S., 2005. Antioxidants and cancer, part 3: Quercetin. Altern. Med. Rev. 5(3), 196-208.
Leitão, G.G., Soares, S.S.V., Brito, T.B.M., Monache, F.D., 2000. Kaempferol glycosides from Siparuna apiosyce. Phytochemistry 55, 679-682.
Lekakis, J., Rallidis, L.S., Andreadou, I., Vamvakou. G., Kazantzoglou, G., Magiatis, P., Skaltsounis, A.L., Kremastinos, D.T., 2005. Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur. J. Cardiovasc Prev. Rehabil.12(6), 596-600.
Low, J.G.H., Ooi, E.E., Vasudevan, S.G., 2017. Current status of dengue therapeutics research and development. J. Infect. Dis. 215(suppl_2), S96-S102.
Lu, N.T., Crespi, C.M., Liu, N.M., Vu, J.Q., Ahmadieh, Y., Wu, S., Lin, S., McClune, A., Durazo, F., Saab, S., Han, S., Neiman, D.C., Beaven, S., French, S.W., 2016. A phase I dose-escalation study demonstrates quercetin safety and explores the potential for bioflavonoid antivirals in patients with chronic hepatitis C. Phytother. Res. 30(1), 160-168.
Lyu, S.Y., Rhim, J.Y., Park, W.B., 2005. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res. 28(11), 1293-1301.
Malet, H., Masse, N., Selisko, B., Romette, J. L., Alvarez, K., Guillemot, J.C., Canard, B., 2008. The flavivirus polymerase is a target for drug discovery. Antiviral. Res. 80(1), 23-35.
Mamani-Matsuda, M., Kauss, T., Al-Kharrat, A., Rambert, J., Fawaz, F., Thiolat, D., Mossalayi, M.D., 2006. Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem. Pharmacol. 72(10), 1304-1310.
Manikandan, P., Muthu, S., A., Manibalan, S. 2014. Small molecules screening against type 2 dengue virus envelope protein (DENV E) from PhytoPhyto antiviral ligands-an in-silico analysis. Asian J. Med. Pharm. Sci. 2(2),143-148.
Meragiaw, M., Asfaw, Z., Argaw, M., 2016. The status of ethnobotanical knowledge of medicinal plants and the impacts of resettlement in Delanta, North Western Wello, Northern Ethiopia. Evidence-Based Compl. Altern. Med. 6(1), 1-24.
Mir, A., Ismatullah, H., Rauf, S., Niazi, U.H.K., 2016. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Inform. Med. Unlocked. 3, 1-6.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S., 2021. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18(11), e2100317.
Mouthe Kemayou, G.P., Fotsing Kache, S., Dzouemo, L.C., M. Happi, G., Fogue Kouam, S., Tchouankeu, J.C., 2021. Phytochemistry, traditional uses, and pharmacology of the genus Ekebergia (Meliaceae): A review. Trends. Phytochem. Res. 5(3), 110-125.
Musarra-Pizzo, M., Giovanna, G., Antonella, S., Rosamaria, P., Maria, T.S., Giuseppina M., 2019. The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin. Nutrients 11(10), 2355.
Nafisi, S.H., Shadaloi, A., Feizbakhsh, A., Tajmir-Riahi, H.A., 2009. RNA binding to antioxidant flavonoids. J. Photochem. Photobiol. B. 9(94), 1-7.
Nahar, L., El-Seedi, H.R., Khalifa, S.A.M., Mohammadhosseini, M., Sarker, S.D., 2021. Ruta essential oils: Composition and bioactivities. Molecules 26(16), 4766.
Negri, G., Santi, D., Tabach, R., 2012. Chemical composition of hydroethanolic extracts from Siparuna guianensis, medicinal plant used as anxiolytics in Amazon region. Rev. Bras. Farmacogn. 22(5), 1024-1034.
Noriega, P., Guerrini, A., Sacchetti, G., Grandini, A., Ankuash, E., Manfredini, S., 2019. Chemical composition and biological activity of five essential oils from the Ecuadorian Amazon. Molecules 24, 1-12.
Ochwang’i, D.O., Kimwele, C.N., Oduma, J.A., Gathumbi, P.K., Mbaria, J.M., Kiama, S.G., 2014. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J. Ethnopharmacol. 151, 1040-1055.
Opio, D.R., Andama, E., Kureh, G.T., 2017. Ethnobotanical survey of antimalarial plants in areas of Abukamola, Angeta, Oculokori and Omarari of Alebtong District in Northern Uganda. Eur. J. Med. Plants. 21, 1-14.
Ozçelik, B., Kartal, M., Orhan, I., 2011. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 49(4), 396-402.
Pan American Health Organization (PAHO) 2018. Reported Cases of Dengue Fever in the Americas Pan American Health Organization. 2018. Accessed on 10.01.2022.
Pan, A., Saw, W.G., Subramanian-Manimekalai, M.S., Grüber, A., Joon, S., Matsui, T., Grüber, G., 2017. Structural features of NS3 of dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Acta Crystallogr. D: Struct. Biol. 73(5), 402-419.
Parida, M.M., Upadhyay, C., Pandya, G., Jana, A.M., 2002. Inhibitory potential of neem (Azadirachta indica A. Juss) leaves on dengue virus type-2 replication. J. Ethnopharmacol. 79(2), 273-278.
Pessoa, L.Z., da S., Duarte, J.L., Ferreira, R.M. dos A., Oliveira, A.E.M. de F.M., Cruz, R.A.S., Faustino, S.M.M., Araújo, R.S., 2018. Nanosuspension of quercetin: preparation, characterization and effects against Aedes aegypti larvae. Rev. Bras. Farmacogn. 28(5), 618-625.
Petersen, E., Wilson, M.E., Touch, S., McCloskey, B., Mwaba, P., Bates, M., Zumla, A., 2016. The rapid spread of zika virus in The Americas - Implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic games. Int. J. Infect. Dis. 44, 11-15.
Qamar, M.T.U., Mumtaz, A., Naseem, R., Ali, A., Fatima, T., Jabbar, T., Ahmad, Z., Ashfaq, U.A., 2014. Molecular docking-based screening of plant flavonoids as dengue NS1 inhibitors. Bioinformation 10(7), 460-465.
Qi, R.F., Zhang, L., Chi, C.W., 2008. Biological characteristics of dengue virus and potential targets for drug design. Acta Biochim Biophys Sin (Shanghai). 40(2), 91-101.
Ramana, M.M.V., Ranade, P.B., Betkar, R.R., Nimkar, A.P., Mundhe, B.C., Bhar, S., 2015. Flavones: Potential anti-dengue targets in silico approach. J. Chem. Pharm. Res. 7(8), 585-591.
Ramos, F.A., Takaishi, Y., Shirotori, M., Kawaguchi, Y., Tsuchiya, K., Shibata, H., Higuti, T., Tadokoro, T., Takeuchi, M., 2006. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa var. cepa L.) skin. J. Agric. Food Chem. 54(10), 3551-3557.
Rauha, J.P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Vuorela, P., 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food. Microbiol. 56(1), 3-12.
Sarwar, M.W., Riaz, A., Dilshad, S.M.R., Al-Qahtani, A., Nawaz-Ul-Rehman, M.S., Mubin, M., 2018. Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR) studies showed plant flavonoids as potential inhibitors of dengue NS2B-NS3 protease. BMC. Struct. Biol. 18(6), 2-10.
Schultes, R.E., Raffauf, R.F., 1990. The Healing Forest: Medicinal and Toxic Plants of the Northwest Amazonia. Dioscorides Press, Portland.
Senthilvel, P., Lavanya, P., Kumar, K.M., Swetha, R., Anitha, P., Anbarasu, A., 2013. Flavonoid from Carica papaya L. inhibits NS2B-NS3 protease and prevents dengue 2 viral assembly. Bioinformation. 9(18), 889-895.
Shinozuka, K., Kikuchi, Y., Nishino, C., Mori, A., Tawata, S., 1988. Inhibitory effect of flavonoids on DNA-dependent DNA and RNA polymerases. Experientia 44(10), 882-885.
Silva, I.F., Oliveira, F.F.d., Oliveira, R.A.d., 2021. Siparuna Aublet genus (Siparunaceae): from folk medicine to chemical composition and biological activity. Trends Phytochem. Res. 5(4), 168-189.
Sinha, M., Chakraborty, U., Kool, A., Chakravarti, M., Das, S., Ghosh, S., Das, S., 2022. In-vitro antiviral action of Eupatorium perfoliatum L. against dengue virus infection: Modulation of mTOR signaling and autophagy. J. Ethnopharmacol. 282(2022), 114627.
Song, J.H., Shim, J.K., Choi, H.J., 2011. Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via an independent pathway of viral-induced reactive oxygen species. Virol. J. 8(460), 2-6.
Suleman, S., Tufa, T.B., Kebebe, D., Belew, S., Mekonnen, Y., Gashe, F., Mussa, E., Wynendaele, E., Duchateau, L., De Spiegeleer, B., 2018. Treatment of malaria and related symptoms using traditional herbal medicine in Ethiopia. J. Ethnopharmacol. 213, 262-279.
Suzuki, Y., Ishihara, M., Segami, T., Ito, M., 1998. Anti-ulcer effects of antioxidants, quercetin, alpha-tocopherol, nifedipine, and tetracycline in rats. Jap. J. Pharmacol. 78(4), 435-441.
Talarico, L.B., Damonte, E.B., 2007. Interference in dengue virus adsorption and uncoating by carrageenans. Virol. 363(2), 473-485.
Talarico, L.B., Pujol, C.A., Zibetti, R.G., Faría, P.C., Noseda, M.D., Duarte, M.E., Damonte, E.B., 2005. The antiviral activity of sulfated polysaccharides against the dengue virus is dependent on virus serotype and host cell. Antiviral. Res. 66(2-3), 103-110.
Tareau, M.A., Palisse, M., Odonne, G., 2017. As vivid as a weed…Medicinal and cosmetic plant uses amongst the urban youth in French Guiana. J. Ethnopharmacol. 203, 200-213.
Trujillo-Correa, A.I., Quintero-Gil, D.C., Diaz-Castillo, F., Quiñones, W., Robledo, S.M., Martinez-Gutierrez, M., 2019. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava L. through bioprospecting. BMC. Complement. Altern. Med. 19(1), 1-16.
Tuasha, N., Petros, B., Asfaw, Z., 2018. Medicinal plants used by traditional healers to treat malignancies and other human ailments in Dalle District, Sidama zone, Ethiopia. J. Ethnobiol. Ethnomed. 14, 15.
Valadeau, C., Pabon, A., Deharo, E., Albán-Castillo, J., Estevez, Y., Lores, F.A., Rojas, R., Gamboa, D., Sauvain, M., Castillo, D., Bourdy, G., 2009. Medicinal plants from the Yanesha (Peru): Evaluation of the leishmanicidal and antimalarial activity of selected extracts. J. Ethnopharmacol.123, 412-422.
Valentini, C.M.A., Rodrigues-Ortiz, C.E., Coelho, M.F.B., 2010a. Siparuna guianensis Aublet (Negramina): uma revisão. Rev. Bras. Pl. Med. 12(1), 96-104.
Vásquez-Garzón, V.R., Arellanes-Robledo, J., García-Román, R., Aparicio-Rautista, D.I., Villa-Treviño, S., 2009. Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defence mechanism. Free. Radic. Res. 43(2), 128-37.
Vaughn, D.W., Green, S., Kalayanarooj, S., Innis, B.L., Nimmannitya, S., Suntayakorn, S., Endy, T.P., Raengsakulrach, B., Rothman, A.L., Ennis, F.A., Nisalak, A., 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis.181(1), 2-9.
Warren, C.A., Paulhill, K.J., Davidson, L.A, Lupton, J.R., Taddeo, S.S., Hong, M.Y., Carroll, R.J., Chapkin, R.S., Turner, N.D., 2009. Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis. J. Nutr. 139(1), 101-105.
Whitehorn, J., Yacoub, S., Anders, K.L., Macareo, L.R., Cassetti, M.C., Nguyen-Van, V.C., Shi, P.Y., Wills, B., Simmons, C.P., 2014. Dengue Therapeutics, chemoprophylaxis, and allied tools: state of the art and future directions. Rothman AL, ed. PLoS. Negl. Trop. Dis. 8(8), e3025.
Wilder-Smith, A., Ooi, E.E., Horstick, O., Wills, B., 2019. Dengue. The Lancet. 393(10169), 350-363.
Williams, A., Ngulde, S.I., Tijjani, M.B., Malgwi, B.U., Sandabe, U.K., 2013. Analgesic activities of the aqueous extract of Ekebergia senegalensis A. Juss stem bark in Albino rats. Cont. J. Pharmacol. Toxicol. Res. 6, 17-21.
Wleklik, M., Luczak, M., Panasiak, W., Kobus, M., Lammer-Zarawska, E., 1988. Structural basis for antiviral activity of flavonoids-naturally occurring compounds. Acta. Virol. 32(6), 522-525.
World Health Organization (WHO)., 2017. Dengue Control. Epidemiology. World Health Organization. http://www.who.int/denguecontrol/epidemiology/en/ (accessed 10.01.2022).
Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., Yang, J., 2015. Quercetin as an antiviral agent inhibits influenza A Virus (IAV) Entry. Viruses 8(1), 6.
Xiao, X., Shi, D., Liu, L., Wang, J., Xie, X., Kang, T., Deng, W., 2011. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through the inactivation of P300 signaling. PLoS One 6(8), e22934.
Yap, T.L., Xu, T., Chen, Y.L., Malet, H., Egloff, M.P., Canard, B., Vasudevan, G.S., Lescar, J., 2007. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J. Virol. 81(9), 4753-4765.
Yasuhara-Bell, J., Yang, Y., Barlow, R., Trapido-Rosenthal, H., Lu, Y., 2010. In vitro evaluation of marine-microorganism extracts for anti-viral activity. Virol. J. 7(1), 182.
Zandi, K., Taherzadeh, M., Yaghoubi, R., Tajbakhsh, S., Rastian, Z., Sartavi, K., 2009. Antiviral activity of Avicennia marina L. against herpes simplex virus type 1 and vaccine strain of poliovirus (An in vitro study). J. Med. Plant Res. 3, 771-775.
Zandi, K., Teoh, B.T., Sam, S.S., Wong, P.F., Mustafa, M., Abubakar, S., 2011. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J. 8(1), 560.
Zhang, Y., Li, Y., Cao, C., Cao, J., Chen, W., Zhang, Y., Wang, C., Wang, J., Zhang, X., Zhao, X., 2010. Dietary flavonol and flavone intakes and their major food sources in Chinese adults. Nutr. Cancer. 62(8), 1120-1127.
Zheng, W., Wu, H., Wang, T., Zhan S., Liu, X., 2021. Quercetin for COVID-19 and dengue co-infection: a potential therapeutic strategy of targeting critical host signal pathways triggered by SARS-CoV-2 and DENV. Brief. Bioinformatics 22(6), 1-10.